Browse > Article
http://dx.doi.org/10.9713/kcer.2020.58.2.280

Constitutive Expression of Lipase on the Cell Surface of Escherichia coli using OmpC Anchoring Motif  

Lee, Seung Hwan (Department of Biotechnology & Bioengineering, Chonnam National University)
Lee, Sang Yup (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering (BK21 Program), Institute of BioCentury, Korea Advanced Institute of Science and Technology)
Publication Information
Korean Chemical Engineering Research / v.58, no.2, 2020 , pp. 280-285 More about this Journal
Abstract
We have developed a constitutive display system of the Pseudomonas fluorescens SIK W1 TliA lipase on the cell surface of Escherichia coli using E. coli outer membrane protein C (OmpC) as an anchoring motif, which is an economical compared to induced system. For the constitutive expression of truncated OmpC-TliA fusion proteins, gntT104 promoter was employed. Cell growth was not affected by over expression of fusion protein during entire culture time, suggesting cell lysis was not a problem. The localization of truncated OmpC-TliA fusion protein on the cell surface was confirmed by immunofluorescence microscopy and measuring whole cell lipase activity. Constitutively displayed lipase was very stable, retaining activity enantioselectivity throughout the five repeated reactions. These results suggest that OmpC from E. coli be a useful anchoring motif for displaying enzymes on the cell surface without any inducers, and this stable surface display system can be employed for a broad range of biotechnological applications.
Keywords
Cell surface display; Lipase; Constitutive expression; Outer membrane protein; Escherichia coli;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jaeger, K.-E., Dijkstra, B. W. and Reetz, M. T., "Bacterial Biocatalysts: Molecular Biology, Three-dimensional Structures, and Biotechnological Applications of Lipase," Annu. Rev. Microbiol., 53, 315-351(1999).   DOI
2 Jaeger, K.-E. and Eggert, T., "Lipases for Biotechnology," Curr. Opin. Biotechnol., 13(4), 390-397(2002).   DOI
3 Reetz, M. T., "Lipases as Practical Biocatalysts," Curr. Opin. Chem. Biol., 6(2), 145-150(2002).   DOI
4 Stergiou, Y. S., Foukis, A., Filippou, M., Koukouritaki, M., Parapouli, M., Theodorou, L. G., Hatziloukas, E., Afendra, A., Pandey, A. and Papamichael, E. M., "Advances in Lipase-catalyzed Esterification Reactions," Biotechnol. Advan., 31(8), 1846-1859(2013).   DOI
5 Gotor-Fernandez, V., Brieva, R. and Gotor, V., "Lipases: Useful Biocatalysts for the Preparation of Pharmaceuticals," J. Mol. Catal. B, 40(3-4), 111-120(2006).   DOI
6 Rodrigues, R. C., Virgen-Ortiz, J. J., dos Santos, J. C. S., Alcantar, A. R., Barbosa, O., Ortiz, C. and Fernandez-Lafuente, R., "Immobilization of Lipases on Hydrophobic Supports: Immobilization Mechanism, Advantages, Problems, and Solutions," Biotechnol. Adv., 37(5), 746-770(2019).   DOI
7 Van Beilen, J. B. and Li, Z., "Enzyme Technology: an Overview," Curr. Opin. Biotechnol., 13(4), 338-344(2002).   DOI
8 Rodrigues, R. C., Ortiz, C. Berenguer-Murcia, A., Torres, R., and Fernandez-Lafuente, R., "Modifying Enzyme Activity and Selectivity by Immobilization, Chem. Soc. Rev., 42(15), 6290-6307 (2013).   DOI
9 Linqiu, C., Carrier-bound immobilized enzymes: principles, application and design, WILEY-VCH, Weinheim, Germany (2005).
10 Krajewsk, B., "Application of Chitin- and Chitosan-based Materials for Enzyme Immobilizations: a Review," Enzyme Microbial. Technol., 35(2-3), 126-139(2004).   DOI
11 Shiraga, S., Kawakami, M., Ishiguro, M. and Ueda, M., "Enhanced Reactivity of Rhizopus oryzae Lipase Displayed on Yeast Cell Surfaces in Organic Solvents: Potential as a Whole-cell Biocatalyst in Organic Solvents," Appl. Environ. Microbiol., 71(8), 4335-4338(2005).   DOI
12 Georgiou, G., Stathopoulos, C., Daugherty, P. S., Nayak, A. R., Iverson, B. L. and Curtiss, R. I., "Display of Heterologous Proteins on the Surface of Microorganisms: from the Screening of Combinatorial Libraries to Live Recombinant Vaccines," Nat. Biotechnol., 15, 29-34(1997).   DOI
13 Lee, S. Y., Choi, J. H. and Xu, J., "Microbial Cell Surface Display," Trends Biotechnol., 21, 45-52(2003).   DOI
14 Smith, M. R., Khera, E. and Wen, F., "Engineering Novel and Improved Biocatalysts by Cell Surface Display," Ing. Eng. Chem. Res., 54(16), 4021-4031(2015).   DOI
15 Lee, S. H., Choi, J-I., Park, S. J., Lee, S. Y. and Park, B. C., "Display of Bacterial Lipase on the Escherichia coli Cell Surface by Using FadL as An Anchoring Motif and Its Use in Enantioselective Biocatalysis," Appl. Environ. Microbiol., 70, 5074-5080(2004).   DOI
16 Liu, Z., Ho, S-H., Hasunuma, T., Chang, J.-S., Ren, N.-Q. and Kondo, A., "Recent Advances in Yeast Cell-surface Display Technologies for Waste Biorefineries," Bioresour. Technol., 215, 324-333(2016).   DOI
17 Matsumoto, T., Fukuda, H., Ueda, M., Tanaka, A. and Kondo, A., "Construction of Yeast Strains with High Cell Surface Lipase Activity by Using Novel Display Systems Based on the Flo1p Flocculation Functional Domain," Appl. Environ. Microbiol., 68(9), 4517-4522(2002).   DOI
18 Shimazu, M., Nuyen A., Mulchandani, A. and Chen., W., "Cell Surface Display of Organophosphorus Hydrolase in Pseudomonas putida Using Ice Nucleation Protein Anchor," Biotechnol. Prog., 19, 1612-1614(2003).   DOI
19 Han, Z., Han, S., Zheng, S. and Lin, Y., "Enhancing Thermostability of a Rhizomucor miehei Lipase by Engineering a Disulfide Bond and Displaying on the Yeast Cell Surface," Appl. Microbiol. Biotechnol., 85, 117-126(2009).   DOI
20 Sambrook, J., and Russell, D. W., Molecular cloning: a laboratory manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (2001).
21 Blattner, F. R., Plunkett, G., Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B. and Shao, Y., "The Complete Genome Sequence of Escherichia coli K-12," Science, 277, 1453-1462(1997).   DOI
22 Jeanteur, D., Lakey, J. H. and Pattus, F., "The Bacterial Porin Superfamily: Sequence Alignment and Structure Prediction," Mol. Microbiol., 5, 2153-2164(1991).   DOI
23 Xu, Z. and Lee, S. Y., "Display of Polyhistidine Peptides on the Escherichia coli Cell Surface by Using Outer Membrane Protein C as An Anchoring Motif," Appl. Environ. Microbiol., 65, 5142-5147 (1999).   DOI
24 Park, S. J., Park, J. P. and Lee, S. Y., "Metabolic Engineering of Escherichia coli for the Production of Medium-chain-length Polyhydroxyalkanoates Rich in Specific Monomers," FEMS Microbiol. Lett., 214, 217-222(2002).   DOI
25 Lee, S. H., Choi, J., Han, M-J., Choi, J. H. and Lee., S. Y., Display of Lipase on the Cell Surface of Escherichia coli Using OprF as An Anchor and Its Application to Enantioselective Resolution in Organic Solvent," Biotechnol. Bioeng., 90, 223-230(2005).   DOI
26 Matsumoto, T., Ito, M., Fukuda, H. and Kondo, A., Enantioselective Transesterification Using Lipase-displaying Yeast Whole-cell Biocatalyst," Appl. Microbiol. Biotechnol., 64, 481-485(2004).   DOI
27 Lee, H., Park, S. J., Han, M.-J., Eom, G. T., Choi, M.-J., Kim, S. H., Oh, Y. H., Song, B. K. and Lee, S. H., "Expression of a Lipase on the Cell-surface of Escherichia coli Using the OmpW Anchoring Motif and Its Application to Enantioselective Reactions," Biotechnol. Lett., 35(10), 1677-1683(2013).   DOI