Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.2
/
pp.268-275
/
2020
A lightweight hardware design of self-timed ring based true random number generator (TRNG) suitable for information security applications is described. To reduce hardware complexity of TRNG, an entropy extractor with feedback structure was proposed, which minimizes the number of ring stages. The number of ring stages of the FSTR-TRNG was determined to be a multiple of eleven, taking into account operating clock frequency and entropy extraction circuit, and the ratio of tokens to bubbles was determined to operate in evenly-spaced mode. The hardware operation of FSTR-TRNG was verified by FPGA implementation. A set of statistical randomness tests defined by NIST 800-22 were performed by extracting 20 million bits of binary sequences generated by FSTR-TRNG, and all of the fifteen test items were found to meet the criteria. The FSTR-TRNG occupied 46 slices of Spartan-6 FPGA device, and it was implemented with about 2,500 gate equivalents (GEs) when synthesized in 180 nm CMOS standard cell library.
Journal of the Korean Society of Industry Convergence
/
v.24
no.5
/
pp.635-639
/
2021
As times goes by, a ton of electric devices have been developing. Nowadays, there are many personal electric goods that are connected each other and have important private information such as identification, account number, passwords, and so on. As many people own at least one electric device, security of the electric devices became significant. To prevent leakage of the information, study of Chaotic TRNG, "Chaotic True Random Number Generator", protecting the information by generating random numbers that are not able to be expected, is essential. In this paper, A chaotic TRNG is introduced is simulated. The proposed Chaotic TRNG is simulated with Virtuoso &, a circuit design program of Cadence that is a software company. For simulating the mentioned Chaotic TRNG, setting values, 0V low and 3V high on Vpulse, 1.2V on V-ref, 3.3V on VDD, and 0V on VSS, are used.
In the era of the Internet of Things, 7 billion diverse devices have been interconnected worldwide. Ensuring information security across these varied devices is crucial in this hyper-connected age. To achieve essential security functions such as confidentiality, integrity, and authentication, it is imperative to implement true random number generators (TRNGs). Therefore, this study proposes a method to rapidly characterize the randomness of TRNGs. While there are international standards for formally characterizing the randomness of TRNGs, adhering to these standards often requires significant time and resources. This study aims to help TRNG developers enhance efficiency in both time and cost by characterizing rough randomness and unpredictability. Firstly, we propose applying auto-correlation and cross-correlation metrics for analog signals. Secondly, we suggest adopting joint entropy and mutual information metrics for digital signals.
Kim, Young-Hee;Jin, HongZhou;Park, Kyunghwan;Kim, Jongbum;Ha, Pan-Bong
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.12
no.6
/
pp.619-628
/
2019
In this paper, we designed a beta ray sensor for a true random number generator. Instead of biasing the gate of the PMOS feedback transistor to a DC voltage, the current flowing through the PMOS feedback transistor is mirrored through a current bias circuit designed to be insensitive to PVT fluctuations, thereby minimizing fluctuations in the signal voltage of the CSA. In addition, by using the constant current supplied by the BGR (Bandgap Reference) circuit, the signal voltage is charged to the VCOM voltage level, thereby reducing the change in charge time to enable high-speed sensing. The beta ray sensor designed with 0.18㎛ CMOS process shows that the minimum signal voltage and maximum signal voltage of the CSA circuit which are resulted from corner simulation are 205mV and 303mV, respectively. and the minimum and maximum widths of the pulses generated by comparing the output signal through the pulse shaper with the threshold voltage (VTHR) voltage of the comparator, were 0.592㎲ and 1.247㎲, respectively. resulting in high-speed detection of 100kHz. Thus, it is designed to count up to 100 kilo pulses per second.
Kim, Young-Hee;Jin, Hong-Zhou;Cha, Jin-Sol;Hwang, Chang-Yoon;Lee, Dong-Hyeon;Salman, R.M.;Park, Kyung-Hwan;Kim, Jong-Bum;Ha, Pan-Bong
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.13
no.5
/
pp.403-411
/
2020
Since the analog circuit of the beta ray sensor circuit for the true random number generator and the power and ground line used in the comparator circuit are shared with each other, the power generated by the digital switching of the comparator circuit and the voltage drop at the ground line was the cause of the decreasein the output signal voltage drop at the analog circuit including CSA (Charge Sensitive Amplifier). Therefore, in this paper, the output signal voltage of the analog circuit including the CSAcircuit is reduced by separating the power and ground line used in the comparator circuit, which is the source of digital switching noise, from the power and ground line of the analog circuit. In addition, in the voltage-to-voltage converter circuit that converts VREF (=1.195V) voltage to VREF_VCOM and VREF_VTHR voltage, there was a problem that the VREF_VCOM and VREF_VTHR voltages decrease because the driving current flowing through each current mirror varies due to channel length modulation effect at a high voltage VDD of 5.5V when the drain voltage of the PMOS current mirror is different when driving the IREF through the PMOS current mirror. Therefore, in this paper, since the PMOS diode is added to the PMOS current mirror of the voltage-to-voltage converter circuit, the voltages of VREF_VCOM and VREF_VTHR do not go down at a high voltage of 5.5V.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.14
no.4
/
pp.338-347
/
2021
In this paper, the beta-ray sensor circuit used in the true random number generator was designed using DB HiTek's 0.18㎛ CMOS process. The CSA circuit proposed a circuit having a function of selecting a PMOS feedback resistor and an NMOS feedback resistor, and a function of selecting a feedback capacitor of 50fF and 100fF. And for the pulse shaper circuit, a CR-RC2 pulse shaper circuit using a non-inverting amplifier was used. Since the OPAMP circuit used in this paper uses single power instead of dual power, we proposed a circuit in which the resistor of the CR circuit and one node of the capacitor of the RC circuit are connected to VCOM instead of GND. And since the output signal of the pulse shaper does not increase monotonically, even if the output signal of the comparator circuit generates multiple consecutive pulses, the monostable multivibrator circuit is used to prevent signal distortion. In addition, the CSA input terminal, VIN, and the beta-ray sensor output terminal are placed on the top and bottom of the silicon chip to reduce capacitive coupling noise between PCB traces.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.7
/
pp.1276-1284
/
2017
Lightweight Encryption Algorithm (LEA) that was standardized as a lightweight block cipher was implemented with 8-bit data path, and the vulnerability of LEA encryption processor to correlation power analysis (CPA) attack was analyzed. The CPA used in this paper detects correct round keys by analyzing correlation coefficient between the Hamming distance of the computed data by applying hypothesized keys and the power dissipated in LEA crypto-processor. As a result of CPA attack, correct round keys were detected, which have maximum correlation coefficients of 0.6937, 0.5507, and this experimental result shows that block cipher LEA is vulnerable to power analysis attacks. A masking method based on TRNG was proposed as a countermeasure to CPA attack. By applying masking method that adds random values obtained from TRNG to the intermediate data of encryption, incorrect round keys having maximum correlation coefficients of 0.1293, 0.1190 were analyzed. It means that the proposed masking method is an effective countermeasure to CPA attack.
Journal of the Korea Institute of Information Security & Cryptology
/
v.26
no.1
/
pp.49-67
/
2016
SP 800-90B of NIST(USA) and AIS.31 of BSI(Germany) are representative statistical tests for TRNGs. In this paper, we concentrate on AIS.31 which is under the ongoing international standardization process. We examine the probabilistic meaning of each statistic of the test in AIS.31 and investigate its probability distribution. By changing significance level and the length of sample bits, we obtain formalized accept region of the test. Furthermore we propose the accept regions for some iterative tests, that are not mentioned in AIS.31, and provide some simulations.
Journal of the Korea Institute of Information Security & Cryptology
/
v.30
no.5
/
pp.771-780
/
2020
QKD(Quantum Key Distribution) is one of the protocols that can make two distant parties safely share secure keys against the threat of quantum computer. Generally, cryptographic applications which are connected to the QKD device have fixed roles as a transmitter and a receiver due to the race condition and complexity of implementation. Because the conventional QKD system is mainly applied to the link encryptor, there are no problems even if the roles of the cryptographic devices are fixed. We propose a new scheme of QKD system and protocol that is easy to extend to the QKD network by eliminating quantum key dependency between cryptographic device and QKD node. The secure keys which are generated by the TRNG(True Random Number Generator) are provided to the cryptographic applications instead of quantum keys. We design an architecture to transmit safely the secure keys using the inbound and outbound quantum keys which are shared between two nodes. In this scheme, since the dependency of shared quantum keys between two QKD nodes is eliminated, all cryptographic applicatons can be a master or a slave depending on who initiates the cryptographic communications.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.11
/
pp.1470-1476
/
2020
This paper describes a design of a lightweight security system-on-chip (SoC) suitable for the implementation of security protocols for IoT and mobile devices. The security SoC using Cortex-M0 as a CPU integrates hardware crypto engines including an elliptic curve cryptography (ECC) core, a SHA3 hash core, an ARIA-AES block cipher core and a true random number generator (TRNG) core. The ECC core was designed to support twenty elliptic curves over both prime field and binary field defined in the SEC2, and was based on a word-based Montgomery multiplier in which the partial product generations/additions and modular reductions are processed in a sub-pipelining manner. The H/W-S/W co-operation for elliptic curve digital signature algorithm (EC-DSA) protocol was demonstrated by implementing the security SoC on a Cyclone-5 FPGA device. The security SoC, synthesized with a 65-nm CMOS cell library, occupies 193,312 gate equivalents (GEs) and 84 kbytes of RAM.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.