• Title/Summary/Keyword: trophic interactions

Search Result 20, Processing Time 0.029 seconds

Trophic position and diet shift based on the body size of Coreoperca kawamebari (Temminck & Schlegel, 1843)

  • Choi, Jong-Yun;Kim, Seong-Ki;Kim, Jeong-Cheol;Yoon, Jung-Do
    • Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Background: Fish body size is a major determinant of freshwater trophic interactions, yet only a few studies have explored the relationship between the fish body size and trophic interactions in river upstream. In this study, we investigated the relationship between the body size and trophic position (TP) of Coreoperca kawamebari (Temminck & Schlegel, 1843) in an upstream of the Geum River. Results: A stable isotope analysis (based on δ15N) was used to determine the TP based on the body size of C. kawamebari. The regression analysis (n = 33, f = 63.840, r2 = 0.68) clearly showed the relationship between the body length and TP of C. kawamebari. The TP of C. kawamebari was clearly divided by body size into the following classes: individuals of size < 10 cm that feed on insects and individuals of size > 10 cm feed on juvenile fish. This selective feeding is an evolutionarily selective tendency to maximize energy intake per unit time. Furthermore, the diet shift of C. kawamebari was led by different spatial distributions. The littoral zone was occupied by individuals of size < 10 cm, and those of size > 10 cm were mainly in the central zone. The littoral zone can be assumed to be enriched with food items such as ephemeropterans and dipterans. Conclusion: The TP of C. kawamebari, as a carnivorous predator, will have a strong influence on biotic interactions in the upstream area of the Geum River, which can lead to food web implication.

Influene of aquatic macrophytes on the interactions among aquatic organisms in shallow wetlands (Upo Wetland, South Korea)

  • Jeong, Keon-Young;Choi, Jong-Yun;Jeong, Kwang-Seuk
    • Journal of Ecology and Environment
    • /
    • v.37 no.4
    • /
    • pp.185-194
    • /
    • 2014
  • Seasonal monitoring was implemented to understand the influence of macrophyte bed structure on the composition and trophic interaction of aquatic organisms (algae, zooplankton, macro-invertebrate, and fish) in a shallow wetland (Upo Wetland, South Korea). Distinct division of the plant assemblage (reed zone and mixed plant zone) was observed. The reed zone was composed solely of Phragmites communis, whereas the mixed plant zone comprised a diverse macrophyte assemblage (Salvinia natans, Spirodela polyrhiza, Trapa japonica, Ceratophyllum demersum, and Hydrilla verticillata). Most of the aquatic organisms were more abundant in the mixed plant zone than in the reed zone, and this was positively associated with the seasonal development of macrophyte cover. Stable isotope analysis showed seasonal interactions among aquatic organisms. The majority of aquatic animal (zooplankton, Odonata, and Ephemeroptera) were dependent on epiphytic particulate organic matter (EPOM), and the dependence on EPOM gradually increased toward autumn. Interestingly, Lepomis macrochirus consumed Ephemeroptera and zooplankton in both macrophyte zones, but Micropterus salmoides depended on different food items in the reed zone and the mixed plant zone. Although, M. salmoides in the reed zone showed food utilization similar to L. macrochirus, it consumed Odonata or small L. macrochirus in the mixed plant zone. Based on these results, it appears that differences in the structure of the two macrophyte zones support different assemblages of aquatic organisms, strongly influencing the trophic interactions between the aquatic organisms.

A Preliminary Trophic Flow Model for Gwangyang Bay, Korea (광양만 예비 영양류 모형)

  • Kang, Yun-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.3
    • /
    • pp.184-195
    • /
    • 2005
  • A preliminary quantitative model of the trophic structure in Gwangyang bay, Korea was obtained using ECOPATH and data from relevant studies to date in the region. The model integrates and analyzes biomass, food spectrum, trophic interactions and the key trophic pathways of the system. The bay model comprises 9 groups of benthic primary producer, phytoplankton, zooplankton, benthos, bivalve, pelagic fish, demersal fish and piscivorous fish. The total system throughput was estimated at $2.4\;kgWW/m^2/yr$, including a consumption of $41\%$, exports of $9\%$, respiratory flows of $24\%$ and flows into detritus of $26\%$. All of which originate from primary producers measured at $52\%$ and detritus of $48\%$. The total biomass was seen to be high compared to the levels of Somme, Delaware, Chesapeake Bays and Seine Estuary. This seems to be possibly due to artificial bivalve aquaculture and overestimation of benthos and benthic primary producer groups. The deviation can be calibrated by neglecting aquaculture and decreasing the habitat area for the groups. The trophic network of the bay shows a low level of recycling and organization as indicated by Finn's cycling index $3.3\%$, Ascendancy $3.1\;kgC/m^2/yr$ bits, Capacity $5.1\;kgC/m^2/yr$ bits and Redundancy $2.2\;kgC/m^2/yr$ bits. A high relative ascendancy of $62\%$ and a low internal relative ascendancy of $18\%$ indicate the system is not fully organized and stable towards disturbances, depending upon external connections. Although the model should be continuously provided with field data and calibrated further in depth, this study is the first trophic model applied to the region. The model can be a useful tool to understand the ecosystem in a quantitative manner.

Development of a link extrapolation-based food web model adapted to Korean stream ecosystems

  • Minyoung Lee;Yongeun Kim;Kijong Cho
    • Korean Journal of Environmental Biology
    • /
    • v.42 no.2
    • /
    • pp.207-218
    • /
    • 2024
  • Food webs have received global attention as next-generation biomonitoring tools; however, it remains challenging because revealing trophic links between species is costly and laborious. Although a link-extrapolation method utilizing published trophic link data can address this difficulty, it has limitations when applied to construct food webs in domestic streams due to the lack of information on endemic species in global literature. Therefore, this study aimed to develop a link extrapolation-based food web model adapted to Korean stream ecosystems. We considered taxonomic similarity of predation and dominance of generalists in aquatic ecosystems, designing taxonomically higher-level matching methods: family matching for all fish (Family), endemic fish (Family-E), endemic fish playing the role of consumers (Family-EC), and resources (Family-ER). By adding the commonly used genus matching method (Genus) to these four matching methods, a total of five matching methods were used to construct 103 domestic food webs. Predictive power of both individual links and food web indices were evaluated by comparing constructed food webs with corresponding empirical food webs. Results showed that, in both evaluations, proposed methods tended to perform better than Genus in a data-poor environment. In particular, Family-E and Family-EC were the most effective matching methods. Our model addressed domestic data scarcity problems when using a link-extrapolation method. It offers opportunities to understand stream ecosystem food webs and may provide novel insights into biomonitoring.

Analysis of Trophic Structures and Energy Flows in Aquatic Ecosystem of the Lower Reaches of the Nakdong River (낙동강 하류 수 생태계의 영양구조와 에너지 흐름)

  • Jang, Sung-Hyun;Zhang, Chang-Ik;Na, Jong-Hun;Lee, Jung-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.4
    • /
    • pp.292-302
    • /
    • 2008
  • The purpose of this study was to analyze the trophic structures and the energy flows in the lower reaches of the Nakdong River using the Ecopath model (Walter et al., 1997). The sampling and analyses were carried out at 6 sampling sites of the lower reaches of the Nakdong River on May and November in 2007. Total of 9 groups detritus, macrophytes, phytoplankton, zooplankton, zoobenthos, Cyprinus carpio, Hemibarbus labeo, Micropterus salmoides and other fishes were considered to assess the trophic relationship, energy flows and interactions among them in the study. As a result, it was concluded that the lower reaches of the Nakdong River was consisted of producers (Detritus, Macrophytes, Phytoplankton), primary consumers (Zooplankton, Zoobenthos, Cyprinus carpio, Hemibarbus labeo, Other fishes) and secondary consumer (Micropterus salmoides). The total system throughput was estimated at 2.7 kg m$^{-2}$ year$^{-1}$ including a consumption of 52%, exports of 9.1%, respiratory flows of 18.0% and flows into detritus of 20.9%. MTI (mixed trophic impacts) analysis demonstrated that Pseudobagrus fulvidraco had positive impact on Cyprinus carpio, Carassius cuvieri and Carassius auratus. On the other hand, other fishes had negative impact on Cyprinus carpio, Carassius cuvieri and Carassius auratus. Also, all the functional groups except detritus had a negative impact on themselves.

Construction of a Simple Bi-trophic Microcosm System Using Standard Test Species (Pseudokirchneriella subcapitata and Daphnia magna) for Testing Chemical Toxicities (화학물질에 대한 독성시험 bi-trophic microcosm 구축에 있어 표준시험생물 녹조류 (Pseudokirchneriella subcapitata)와 물벼룩 (Daphnia magna)의 개체군 특성 연구)

  • Sakamoto, Masaki;Mano, Hiroyuki;Hanazato, Takayuki;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.228-235
    • /
    • 2016
  • Aquatic ecosystems are receiving various harmful effects due to anthropogenic chemical pollutions. To protect wildlife, risk assessments of the chemicals are conducted using reference indexes of toxicity estimated by species-level laboratory tests and/or micro-/mesocosm community-level studies. However, the existing micro-/mesocosm communities are structurally too complicated, and it is also difficult to compare the experimental results directly with those from species-level tests. Here, we developed a procedure of a simple bi-trophic microcosm experiment which contains the common species (a green algae, Pseudokirchneriella subcapitata and a cladoceran, Daphnia magna) for testing chemical toxicities. For the proper operation of bitrophic microcosm experiment, the minimum required concentration of primary producer (P. subcapitata) is $5{\times}10^5cells\;mL^{-1}$. The microcosm system showed higher stability when the initially introduced D. magna population was composed of neonates (<24-h old) than adults and those mixture. This simple microcosm system would be an applicable tool to estimate the disturbing impacts of pollutants on plant-herbivore interactions, and linking the species- and population-/community level risk assessments in the future studies.

Differential Selection by Nematodes of an Introduced Biocontrol Fungus vs. Indigenous Fungi in Nonsterile Soil

  • Kim, Tae Gwan;Knudsen, Guy R.
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.831-838
    • /
    • 2018
  • Trophic interactions of introduced biocontrol fungi with soil animals can be a key determinant in the fungal proliferation and activity. This study investigated the trophic interaction of an introduced biocontrol fungus with soil nematodes. The biocontrol fungus Trichoderma harzianum ThzID1-M3 and the fungivorous nematode Aphelenchoides sp. (10 per gram of soil) were added to nonsterile soil, and microbial populations were monitored for 40 days. Similar results were obtained when the experiment was duplicated. ThzID1-M3 stimulated the population growth of indigenous nematodes (p < 0.05), regardless of whether Aphelenchoides sp. was added. Without ThzID1-M3, indigenous nematodes did not increase in number and the added Aphelenchoides sp. nematodes almost disappeared by day 10. With ThzID1-M3, population growth of nematodes was rapid between 5 and 10 days after treatment. ThzID1-M3 biomass peaked on day 5, dropped at day 10, and then almost disappeared at day 20, which was not influenced by the addition of nematodes. In contrast, a large quantity of ThzID1-M3 hyphae were present in a heat-treated soil in which nematodes were eliminated. Total fungal biomass in all treatments peaked on day 5 and subsequently decreased. Addition of nematodes increased the total fungal biomass (p < 0.05), but ThzID1-M3 addition did not affect the fungal biomass. Hyphae of total fungi when homogenously distributed did not support the nematode population growth; however, hyphae of the introduced fungus did when densely localized. The results suggest that soil fungivorous nematodes are an important constraint on the hyphal proliferation of fungal agents introduced into natural soils.

Interactions between marine bacteria and red tide organisms in Korean waters

  • Seong, Kyeong Ah;Jeong, Hae Jin
    • ALGAE
    • /
    • v.28 no.4
    • /
    • pp.297-305
    • /
    • 2013
  • There is increasing interest in the relationships between marine bacteria and red tide organisms. Some bacteria are known to kill red tide organisms, and may be responsible for accelerating the termination of red tides. Thus, certain algicidal bacteria have been proposed for the control of red tides. Meanwhile, many red tide organisms are known to feed on marine bacteria. The roles of marine bacteria and red tide organisms are therefore reversible. In Korean waters, the killing of red tide organisms by algicidal bacteria, and also the feeding of red tide organisms on marine bacteria have been extensively investigated. The findings of such studies may influence the conventional view of red tide dynamics, and also planktonic food webs. Here, we review the species and concentrations of algicidal bacteria that kill red tide organisms in Korean waters, as well as the ingestion rate and grazing impact of red tide organisms on marine bacteria. Furthermore, we offer an insight into the ecological roles of these 2 components in marine planktonic food webs.

Ecological Responses of Plants to Climate Change: Research Trends and Its Applicability in Korea (기후변화에 대한 식물의 생태적 반응: 연구동향과 한국에서의 적용가능성)

  • Kang, Hyesoon
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.319-331
    • /
    • 2013
  • Recent climate change, which is mostly ascribed to anthropogenic activities, is believed to be a major factor leading to biodiversity decreases and ecosystem service deteriorations. I have reviewed recent studies on climate change effects for many ecological processes involved with plants, in order to improve our understanding of the nature of ecological complexity. Plants in general have better growth and productivity under high levels of $CO_2$, although the long term effects of such $CO_2$ fertilizers are still controversial. Over the last 30 years, the Earth has been greening, particularly at higher latitudes of the Northern Hemisphere, perhaps due to a relaxation of climatic constraints. Human appropriation of net primary productivity (NPP), which corresponds up to 1/3 of global NPP, is ultimately responsible for climate change and biodiversity decreases. Climate change causes phenological variations in plants, especially in regards to spring flowering and fall leaf coloring. Many plants migrate polewards and towards higher altitudes to seek more appropriate climates. On the other hand, tree mortality and population declines have recently been reported in many continents. Landscape disturbance not only hinders the plant migration, but also makes it difficult to predict the plants' potential habitats. Plant and animal population declines, as well as local extinctions, are largely due to the disruption of species interactions through temporal mismatching. Temperature and $CO_2$ increase rates in Korea are higher than global means. The degree of landscape disturbances is also relatively high. Furthermore, long-term data on individual species responses and species interactions are lacking or quite limited in Korea. This review emphasizes the complex nature of species responses to climate change at both global and local scales. In order to keep pace with the direction and speed of climate change, it is urgently necessary to observe and analyze the patterns of phenology, migration, and trophic interactions of plants and animals in Korea's landscape.

Roles of Mesenchymal Stem Cells in Tissue Regeneration and Immunomodulation

  • Ayala-Cuellar, Ana Patricia;Kang, Ji-Houn;Jeung, Eui-Bae;Choi, Kyung-Chul
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.25-33
    • /
    • 2019
  • Mesenchymal stem cells are classified as multipotent stem cells, due to their capability to transdifferentiate into various lineages that develop from mesoderm. Their popular appeal as cell-based therapy was initially based on the idea of their ability to restore tissue because of their differentiation potential in vitro; however, the lack of evidence of their differentiation to target cells in vivo led researchers to focus on their secreted trophic factors and their role as potential powerhouses on regulation of factors under different immunological environments and recover homeostasis. To date there are more than 800 clinical trials on humans related to MSCs as therapy, not to mention that in animals is actively being applied as therapeutic resource, though it has not been officially approved as one. But just as how results from clinical trials are important, so is to reveal the biological mechanisms involved on how these cells exert their healing properties to further enhance the application of MSCs on potential patients. In this review, we describe characteristics of MSCs, evaluate their benefits as tissue regenerative therapy and combination therapy, as well as their immunological properties, activation of MSCs that dictate their secreted factors, interactions with other immune cells, such as T cells and possible mechanisms and pathways involved in these interactions.