DOI QR코드

DOI QR Code

Trophic position and diet shift based on the body size of Coreoperca kawamebari (Temminck & Schlegel, 1843)

  • Received : 2019.09.11
  • Accepted : 2019.12.09
  • Published : 2020.03.31

Abstract

Background: Fish body size is a major determinant of freshwater trophic interactions, yet only a few studies have explored the relationship between the fish body size and trophic interactions in river upstream. In this study, we investigated the relationship between the body size and trophic position (TP) of Coreoperca kawamebari (Temminck & Schlegel, 1843) in an upstream of the Geum River. Results: A stable isotope analysis (based on δ15N) was used to determine the TP based on the body size of C. kawamebari. The regression analysis (n = 33, f = 63.840, r2 = 0.68) clearly showed the relationship between the body length and TP of C. kawamebari. The TP of C. kawamebari was clearly divided by body size into the following classes: individuals of size < 10 cm that feed on insects and individuals of size > 10 cm feed on juvenile fish. This selective feeding is an evolutionarily selective tendency to maximize energy intake per unit time. Furthermore, the diet shift of C. kawamebari was led by different spatial distributions. The littoral zone was occupied by individuals of size < 10 cm, and those of size > 10 cm were mainly in the central zone. The littoral zone can be assumed to be enriched with food items such as ephemeropterans and dipterans. Conclusion: The TP of C. kawamebari, as a carnivorous predator, will have a strong influence on biotic interactions in the upstream area of the Geum River, which can lead to food web implication.

Keywords

References

  1. Aksnes DL, Nejstgaard J, Sædberg E, Sornes T. Optical control of fish and zooplankton populations. Limnol Oceanogr. 2004;49(1):233-8. https://doi.org/10.4319/lo.2004.49.1.0233
  2. Arrington DA, Winemiller KO. Preservation effects on stable isotope analysis of fish muscle. Trans Am Fish Soc. 2002;131(2):337-42. https://doi.org/10.1577/1548-8659(2002)131<0337:PEOSIA>2.0.CO;2
  3. Barbiero RP, Balcer M, Rockwell DC, Tuchman ML. Recent shifts in the crustacean zooplankton community of Lake Huron. Can J Fish Aquat Sci. 2009;66(5):816-28. https://doi.org/10.1139/F09-036
  4. Barnes C, Maxwell D, Reuman DC, Jennings S. Global patterns in predator-prey size relationships reveal size dependency of trophic transfer efficiency. Ecology. 2010;91(1):222-32. https://doi.org/10.1890/08-2061.1
  5. Brett MT, Goldman CR. Consumer versus resource control in freshwater pelagic food webs. Science. 1997;275(5298):384-6. https://doi.org/10.1126/science.275.5298.384
  6. Brooke MDL, O’Connell TC, Wingate D, Madeiros J, Hilton GM, Ratcliffe N. Potential for rat predation to cause decline of the globally threatened Henderson petrel Pterodroma atrata: evidence from the field, stable isotopes and population modelling. Endanger Species Res. 2010;11(1):47-59. https://doi.org/10.3354/esr00249
  7. Choi JY, Jeong KS, Kim SK, La GH, Chang KH, Joo GJ. Role of macrophytes as microhabitats for zooplankton community in lentic freshwater ecosystems of South Korea. Ecol Inform. 2014;24:177-85. https://doi.org/10.1016/j.ecoinf.2014.09.002
  8. Craig LS, Olden JD, Arthington AH, Entrekin S, Hawkins CP, Kelly JJ, Kennedy TA, Maitland BM, Rosi EJ, Roy AH, Strayer DL, Tank JL, West AO, Wooten MS. Meeting the challenge of interacting threats in freshwater ecosystems: a call to scientists and managers. Elem Sci Anth. 2017;e5.
  9. Duffy EJ, Beauchamp DA, Sweeting RM, Beamish RJ, Brennan JS. Ontogenetic diet shifts of juvenile Chinook salmon in nearshore and offshore habitats of Puget Sound. Trans Am Fish Soc. 2010;139(3):803-23. https://doi.org/10.1577/T08-244.1
  10. Figueiredo BR, Mormul RP, Benedito E. Structural complexity and turbidity do not interact to influence predation rate and prey selectivity by a small visually feeding fish. Mar Freshw Res. 2015;66(2):170-6. https://doi.org/10.1071/MF14030
  11. Galarowicz TL, Adams JA, Wahl DH. The influence of prey availability on ontogenetic diet shifts of a juvenile piscivore. Can J Fish Aquat Sci. 2006;63(8):1722-33. https://doi.org/10.1139/f06-073
  12. Garrido S, Marcalo A, Zwolinski J, Van der Lingen CD. Laboratory investigations on the effect of prey size and concentration on the feeding behaviour of Sardina pilchardus. Mar Ecol Prog Ser. 2007;330:189-99. https://doi.org/10.3354/meps330189
  13. Gliwicz ZM, Szymanska E, Wrzosek D. Body size distribution in Daphnia populations as an effect of prey selectivity by planktivorous fish. Hydrobiologia. 2010;643(1):5-19. https://doi.org/10.1007/s10750-010-0125-y
  14. Hansen GJ, Hein CL, Roth BM, Vander Zanden MJ, Gaeta JW, Latzka AW, Carpenter SR. Food web consequences of long-term invasive crayfish control. Can J Fish Aquat Sci. 2013;70(7):1109-22. https://doi.org/10.1139/cjfas-2012-0460
  15. He X, Kitchell JF. Direct and indirect effects of predation on a fish community: a whole-lake experiment. Trans Am Fish Soc. 1990;119(5):825-35. https://doi.org/10.1577/1548-8659(1990)119<0825:DAIEOP>2.3.CO;2
  16. Heck KL, Crowder LB. Habitat structure and predator-prey interactions in vegetated aquatic systems. In: Bell SS, McCoy ED, Mushinsky HR, editors. Habitat structure. Dordrecht: Springer; 1991. p. 281-99.
  17. Hintz WD, Relyea RA. A salty landscape of fear: responses of fish and zooplankton to freshwater salinization and predatory stress. Oecologia. 2017;85(1):47-156.
  18. Holmes TH, McCormick MI. Size-selectivity of predatory reef fish on juvenile prey. Mar Ecol Prog Ser. 2010;399:73-283.
  19. Jacobsen L, Perrow MR. Predation risk from piscivorous fish influencing the diel use of macrophytes by planktivorous fish in experimental ponds. Ecol Freshw Fish. 1998;7(2):78-86. https://doi.org/10.1111/j.1600-0633.1998.tb00174.x
  20. Jeppesen E, Sondergaard M, Sondergaard M, Christofferson K. The structuring role of submerged macrophytes in lakes (Vol. 131). Springer Science & Business Media; 2012.
  21. Kai ET, Marsac F. Influence of mesoscale eddies on spatial structuring of top predators’ communities in the Mozambique Channel. Prog Oceanogr. 2010;86(1-2):214-23. https://doi.org/10.1016/j.pocean.2010.04.010
  22. Kang H, Park MY, Jang JH. Effect of climate change on fish habitat in the Nakdong River watershed. J Korea Water Resour Assoc. 2013;46(1):1-12. https://doi.org/10.3741/JKWRA.2013.46.1.1
  23. Kawakami T, Tachihara K. Diet shift of larval and juvenile landlocked Ryukyu-ayu Plecoglossus altivelis ryukyuensis in the Fukuji Reservoir, Okinawa Island. Japan. Fish Sci. 2005;71(5):1003-9. https://doi.org/10.1111/j.1444-2906.2005.01057.x
  24. Kim CK, Lee TW, Lee KT, Lee JH, Lee CB. Nationwide monitoring of mercury in wild and farmed fish from fresh and coastal waters of Korea. Chemosphere. 2012;89(11):1360-8. https://doi.org/10.1016/j.chemosphere.2012.05.093
  25. Kim IS, Park JY. Freshwater fish of Korea. Ltd., Korea: Kyo-Hak Publishing Co.; 2002.
  26. McCauley DJ, Young HS, Dunbar RB, Estes JA, Semmens BX, Micheli F. Assessing the effects of large mobile predators on ecosystem connectivity. Ecol Appl. 2012;22(6):1711-7. https://doi.org/10.1890/11-1653.1
  27. Nilsson PA, Bronmark C. Prey vulnerability to a gape-size limited predator:behavioural and morphological impacts on northern pike piscivory. Oikos. 2000;88(3):539-46. https://doi.org/10.1034/j.1600-0706.2000.880310.x
  28. O'Hare MT, Baattrup-Pedersen A, Nijboer R, Szoszkiewicz K, Ferreira T. Macrophyte communities of European streams with altered physical habitat. In: Furse MT, Hering D, Brabec K, Buffagni A, Sandin L, Verdonschot PFM, editors. The ecological status of european rivers:evaluation and intercalibration of assessment methods. Dordrecht:Springer; 2006. p. 197-210.
  29. Ou C, Montana CG, Winemiller KO. Body size-trophic position relationships among fishes of the lower Mekong basin. Royal Society open science. 2017;4(1):e160645. https://doi.org/10.1098/rsos.160645
  30. Parker BR, Schindler DW. Cascading trophic interactions in an oligotrophic species-poor alpine lake. Ecosystems. 2006;9(2):157-66. https://doi.org/10.1007/s10021-004-0016-z
  31. Parnell AC, Inger R, Bearhop S, Jackson L. Source partitioning using stable isotopes: coping with too much variation. PLoS One. 2010;5:e9672. https://doi.org/10.1371/journal.pone.0009672
  32. Post DM. The long and short of food-chain length. Trends Ecol Evol. 2002;17:269-77. https://doi.org/10.1016/S0169-5347(02)02455-2
  33. Post DM, Palkovacs EP, Schielke EG, Dodson SI. Intraspecific variation in a predator affects community. Ecology. 2008;89(7):2019-32. https://doi.org/10.1890/07-1216.1
  34. Power ME. Top-down and bottom-up forces in food webs: do plants have primacy. Ecology. 1992;73(3):733-46. https://doi.org/10.2307/1940153
  35. Royaute R, Pruitt JN. Varying predator personalities generates contrasting prey communities in an agroecosystem. Ecology. 2015;96(11):2902-11. https://doi.org/10.1890/14-2424.1
  36. Rybczynski SM, Walters DM, Fritz KM, Johnson BR. Comparing trophic position of stream fishes using stable isotope and gut contents analyses. Ecol Freshw Fish. 2008;17(2):199-206. https://doi.org/10.1111/j.1600-0633.2007.00289.x
  37. Schoener TW. A brief history of optimal foraging ecology. In: Schoener T.W. (1987) A brief history of optimal foraging ecology. In: Kamil AC, Krebs JR, Pulliam HR, editors. Foraging behavior. Boston: MA. Springer; 1987. p. 5-67.
  38. Shurin JB, Clasen JL, Greig HS, Kratina P, Thompson PL. Warming shifts top-down and bottom-up control of pond food web structure and function. Philos Trans R Soc B: Biol Sci. 2012;367(1605):3008-17. https://doi.org/10.1098/rstb.2012.0243
  39. Shurin JB, Seabloom EW. The strength of trophic cascades across ecosystems:predictions from allometry and energetics. J Anim Ecol. 2005;74(6):1029-38. https://doi.org/10.1111/j.1365-2656.2005.00999.x
  40. Sih A, Crowley P, McPeek M, Petranka J, Strohmeier K. Predation, competition, and prey communities: a review of field experiments. Annual Reviews inc. 1985;16(1):269-311.
  41. Smokorowski KE, Pratt TC. Effect of a change in physical structure and cover on fish and fish habitat in freshwater ecosystems-a review and meta-analysis. Environ Rev. 2007;15:15-41. https://doi.org/10.1139/a06-007
  42. Stoks R, McPeek MA. Antipredator behavior and physiology determine Lestes species turnover along the pond-permanence gradient. Ecology. 2003;84(12):3327-38. https://doi.org/10.1890/02-0696
  43. Syvaranta J, Hogmander P, Keskinen T, Karjalainen J, Jones RI. Altered energy flow pathways in a lake ecosystem following manipulation of fish community structure. Aquat Sci. 2011;73(1):79-89. https://doi.org/10.1007/s00027-010-0161-8
  44. Szedlmayer ST, Lee JD. Diet shifts of juvenile red snapper (Lutjanus campechanus) with changes in habitat and fish size. Fishery Bulletin. 2004;102(2):366-75.
  45. Thevenon F, Graham ND, Herbez A, Wildi W, Pote J. Spatio-temporal distribution of organic and inorganic pollutants from Lake Geneva (Switzerland) reveals strong interacting effects of sewage treatment plant and eutrophication on microbial abundance. Chemosphere. 2011;84(5):609-17. https://doi.org/10.1016/j.chemosphere.2011.03.051
  46. Vander Zanden MJ, Cabana G, Rasmussen JB. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (${\delta}^{15}N$) and literature dietary data. Can J Fish Aquat Sci. 1997;54(5):1142-58. https://doi.org/10.1139/f97-016
  47. Vanderklift MA, Ponsard S. Sources of variation in consumer-diet ${\delta}^{15}N$ enrichment: a meta-analysis. Oecologia. 2003;136:169-82. https://doi.org/10.1007/s00442-003-1270-z
  48. Vila M, Espinar JL, Hejda M, Hulme PE, Jarosik V, Maron JL, Pergl J, Schaffner U, Sun Y, Pysek P. Ecological impacts of invasive alien plants: a metaanalysis of their effects on species, communities and ecosystems. Ecol lett. 2011;14(7):702-8. https://doi.org/10.1111/j.1461-0248.2011.01628.x
  49. Warfe DM, Barmuta LA. Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia. 2004;141(1):171-8. https://doi.org/10.1007/s00442-004-1644-x
  50. Zanden MJV, Rasmussen JB. Primary consumer ${\delta}^{13}C$ and ${\delta}^{15}N$ and the trophic position of aquatic consumers. Ecology. 1999;80:1395-404. https://doi.org/10.1890/0012-9658(1999)080[1395:PCCANA]2.0.CO;2
  51. Zavaleta ES, Hobbs RJ, Mooney HA. Viewing invasive species removal in a wholeecosystem context. Trends Ecol Evol. 2001;16(8):454-9. https://doi.org/10.1016/S0169-5347(01)02194-2