DOI QR코드

DOI QR Code

Ecological Responses of Plants to Climate Change: Research Trends and Its Applicability in Korea

기후변화에 대한 식물의 생태적 반응: 연구동향과 한국에서의 적용가능성

  • Kang, Hyesoon (School of Biological Science and Chemistry, Sungshin Women's University)
  • 강혜순 (성신여자대학교 생명화학부)
  • Received : 2013.07.03
  • Accepted : 2013.08.08
  • Published : 2013.09.30

Abstract

Recent climate change, which is mostly ascribed to anthropogenic activities, is believed to be a major factor leading to biodiversity decreases and ecosystem service deteriorations. I have reviewed recent studies on climate change effects for many ecological processes involved with plants, in order to improve our understanding of the nature of ecological complexity. Plants in general have better growth and productivity under high levels of $CO_2$, although the long term effects of such $CO_2$ fertilizers are still controversial. Over the last 30 years, the Earth has been greening, particularly at higher latitudes of the Northern Hemisphere, perhaps due to a relaxation of climatic constraints. Human appropriation of net primary productivity (NPP), which corresponds up to 1/3 of global NPP, is ultimately responsible for climate change and biodiversity decreases. Climate change causes phenological variations in plants, especially in regards to spring flowering and fall leaf coloring. Many plants migrate polewards and towards higher altitudes to seek more appropriate climates. On the other hand, tree mortality and population declines have recently been reported in many continents. Landscape disturbance not only hinders the plant migration, but also makes it difficult to predict the plants' potential habitats. Plant and animal population declines, as well as local extinctions, are largely due to the disruption of species interactions through temporal mismatching. Temperature and $CO_2$ increase rates in Korea are higher than global means. The degree of landscape disturbances is also relatively high. Furthermore, long-term data on individual species responses and species interactions are lacking or quite limited in Korea. This review emphasizes the complex nature of species responses to climate change at both global and local scales. In order to keep pace with the direction and speed of climate change, it is urgently necessary to observe and analyze the patterns of phenology, migration, and trophic interactions of plants and animals in Korea's landscape.

Keywords

References

  1. Allen, C.D., A.K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier, T. Kitzberger, A. Rigling, D.D. Breshears, E.H. (Ted) Hogg, P. Gonzalez, R. Fensham, Z. Zhang, J. Castro, N. Demidova, J.-H. Lim, G. Allard, S.W. Running, A. Semerci and N. Cobb. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259: 660-684. https://doi.org/10.1016/j.foreco.2009.09.001
  2. Archetti, M., A.D. Richardson, J. O'Keefe and N. Delpierre. 2013. Predicting climate change impacts on the amount and duration of autumn colors in a New England Forest. PLoS ONE 8: e57373. (doi:10.1371/journal.pone.0057373).
  3. Ayres, M.P. and M.J. Lombardero. 2000. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. The Science of the Total Environment 262: 263-286. https://doi.org/10.1016/S0048-9697(00)00528-3
  4. Bartomeus, I., J.S. Ascher, D. Wagner, B.N. Danforth, S. Colla, S. Kornbluth and R. Winfree. 2011. Climate-associated phenological advances in bee pollinators and beepollinated plants. Proceedings of National Academy of Sciences of the United States of America 108: 20645- 20649.
  5. Bawa, K.S., H. Kang and M.H. Grayum. 2003. Relationship among time, frequency, and duration of flowering in tropical rain forest trees. American Journal of Botany 90: 877-887. https://doi.org/10.3732/ajb.90.6.877
  6. Bazzaz, F.A. 1990. The response of natural ecosystems to the rising global $CO_2$ levels. Annual Review of Ecology and Systematics 21: 167-196. https://doi.org/10.1146/annurev.es.21.110190.001123
  7. Beier, C., B.A. Emmett, J. Penuelas, I.K. Schmidt, A. Tietema, M. Estiarte, P. Gundersen, L. Llorensc, T. Riis-Nielsen, A. Sowerby and A. Gorissen. 2008. Carbon and nitrogen cycles in European ecosystems respond differently to global warming. The Science of the Total Environment 407: 692-697. https://doi.org/10.1016/j.scitotenv.2008.10.001
  8. Biesmeijer, J.C., S.P.M. Roberts, M. Reemer, R. Ohlemüller, M. Edwards, T. Peeters, A.P. Schaffers, S.G. Potts, R. Kleukers, C.D. Thomas, J. Settele and W.E. Kunin. 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313: 351- 354. https://doi.org/10.1126/science.1127863
  9. Cahill, A.E., M.E. Aiello-Lammens, M.C. Fisher-Reid, X. Hua, C.J. Karanewsky, H.Y. Ryu, G.C. Sbeglia, F. Spagnolo, J.B. Waldron, O. Warsi and J.J. Wiens. 2012. How does climate change cause extinction? Proceedings of the Royal Society Series B 280: 20121890. (doi: 10.1098/ rspb.2012.1890).
  10. Canadell, J.G. and M.R. Raupach. 2008. Managing forests for climate change mitigation. Science 320: 1456-1457. https://doi.org/10.1126/science.1155458
  11. Chapin, F.S. III., E.S. Zavaleta, V.T. Eviner, R.L. Naylor, P.M. Vitousek, H.L. Reynolds, D.U. Hooper, S. Lavorel, O.E. Sala, S.E. Hobbie, M.C. Mack and S. Díaz. 2000. Consequences of changing biodiversity. Nature 405: 234- 242. https://doi.org/10.1038/35012241
  12. Chmielewski, F.M. and T. Rötzer. 2001. Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology 108: 101-112. https://doi.org/10.1016/S0168-1923(01)00233-7
  13. Ciais, Ph., M. Reichstein, N. Viovy, A. Granier, J. Ogée, V. Allard, M. Aubinet, N. Buchmann, Chr. Bernhofer, A. Carrara, F. Chevallier, N. De Noblet, A.D. Friend, P. Friedlingstein, T. Grünwald, B. Heinesch, P. Keronen, A. Knohl, G. Krinner, D. Loustau, G. Manca, G. Matteucci, F. Miglietta, J.M. Ourcival, D. Papale, K. Pilegaard, S. Rambal, G. Seufert, J.F. Soussana, M.J. Sanz, E.D. Schulze, T. Vesala and R. Valentini. 2005. Europewide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529-533. https://doi.org/10.1038/nature03972
  14. Davis, C.C., C.G. Willis, R.B. Primack and A.J. Miller-Rushing. 2010. The importance of phylogeny to the study of phenological response to global climate change. Philosophical Transactions of the Royal Society of London Series B 365: 3201-3213. https://doi.org/10.1098/rstb.2010.0130
  15. Davis, M.B. 1981. Quaternary history and the stability of forest communities, p. 132-143. In: Forest Succession Concepts and Applications (West, D.C., H.H. Shugart and D.B. Botkin, eds.). Springer-Verlag, New York.
  16. Dawson, T.P., S.T. Jackson, J.I. House, I.C. Prentice and G.M. Mace. 2011. Beyond predictions: biodiversity conservation in a changing climate. Science 332: 53-58. https://doi.org/10.1126/science.1200303
  17. De Jong, R., J. Verbesselt, M.E. Schaepman and S. De Bruin. 2012. Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Global Change Biology 18: 642-655. https://doi.org/10.1111/j.1365-2486.2011.02578.x
  18. Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J. Kleypas, V.J. Fabry and F.J. Millero. 2004. Impact of anthropogenic $CO_2$ on the $CaCO_3$system in the oceans. Science 305: 362-366. https://doi.org/10.1126/science.1097329
  19. Forister, M.L., A.C. McCall, N.J. Sanders. J.A. Fordyce, J.H. Thorne, J. O'Brien, D.P. Waetjen and A.M. Shapiro. 2010. Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proceedings of National Academy of Sciences of the United States of America 107: 2088-2092.
  20. Haberl, H., K.H. Erb, F. Krausmann, V. Gaube, A. Bondeau, C. Plutzar, S. Gingrich, W. Lucht and M. Fischer-Kowalski. 2007. Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proceedings of National Academy of Sciences of the United States of America 104: 12942-12947. https://doi.org/10.1073/pnas.0704243104
  21. Hampe, A. and A.S. Jump. 2011. Climate relicts: past, present, future. Annual Review of Ecology, Evolution, and Systematics 42: 313-333. https://doi.org/10.1146/annurev-ecolsys-102710-145015
  22. Haninen, H. 1990. Modelling bud dormancy release in trees from cool and temperate regions. Acta Foralia Fennica 213: 1-47.
  23. Harris, J.A., R.J. Hobbs, E. Higgs and J. Aronson. 2006. Ecological restoration and global climate change. Restoration Ecology 14: 170-176. https://doi.org/10.1111/j.1526-100X.2006.00136.x
  24. Holzinger, B., K. Hulber, M. Camenisch and G. Grabherr. 2008. Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecology 195: 179-196. https://doi.org/10.1007/s11258-007-9314-9
  25. Imhoff, M.L., L. Bounoua, T. Ricketts, C. Loucks, R. Harriss and W.T. Lawrence. 2004. Global patterns in human consumption of net primary production. Nature 429: 870-873. https://doi.org/10.1038/nature02619
  26. IPCC (International Panel on Climate Change). 2007. Working Group I: the Physical Science Basis. Summary for Policy Makers. http://ipcc-wg1.ucar.edu/wg1/wg1-reprot. html.
  27. Jump, A.S., C. Matyas and J. Penuelas. 2009. The altitudefor- latitude disparity in the range retractions of woody species. Trends in Ecology and Evolution 24: 694-701. https://doi.org/10.1016/j.tree.2009.06.007
  28. Kang, H. and J. Jang. 2004. Flowering patterns among angiosperm species in Korea: diversity and constraints. Journal of Plant Biology 47: 348-355. https://doi.org/10.1007/BF03030550
  29. Kang, H., H. Kim and E. Jang. 2008. Landscape analysis of the Hallasan National Park in a Jeju Island biosphere reserve: fragmentation pattern. Korean Journal of Environment and Ecology 22: 309-319.
  30. Kang, H., J. Kim and K. Park. 2005. Habitat connectivity between Soraksan and Odaesan National Parks with a consideration of wildlife home range. Korean Journal of Environment and Ecology 19: 1-10.
  31. Kang, H., S. Shin and H. Whang. 2010. Are the conservation areas are sufficient to conserve endangered plant species in Korea? Journal of Ecology and Field Biology 33: 377-389. https://doi.org/10.5141/JEFB.2010.33.4.377
  32. Kearns, C.A., D.W. Inouye and N.M. Waser. 1998. Endangered mutualisms: the conservation of plant-pollinator interactions. Annual Review of Ecology and Systematics 29: 83-112. https://doi.org/10.1146/annurev.ecolsys.29.1.83
  33. Kim, M.-K. 2012. Observation and prediction of climate change in Korea, p. 54-75. In: 25 Experts' Solutions for Climate Change (Jeon, E.C., ed.). Geobook, Seoul.
  34. Kong, W. 2001. Spatio-temporal distributional changes of Bamboo. Korean Geographcal Society 36: 444-457.
  35. Kong, W. 2005. Selection of vulnerable indicator plants by global warming. Asia-Pacific Journal of Atmospheric Sciences 41: 263-273.
  36. Koo, K.A., W.K. Park and W.S. Kong. 2001. Dendrochronological analysis of Abies koreana W. at Mt. Hall, Korea. Journal of Ecology and Field Biology 24: 281-288.
  37. Korea Meteorological Administration. 2005. Annual Report 2004. Korea Meteorological Administration.
  38. Korner, C., R. Asshoff, O. Bignucolo, S. Hattenschwiler, S.G. Keel, S. Pelaez-Riedl, S. Pepin, R.T.W. Siegwolf and G. Zotzet. 2005. Carbon flux and growth in mature deciduous forest trees exposed to elevated $CO_2$. Science 309: 1360-1362. https://doi.org/10.1126/science.1113977
  39. Koteen, L. 2002. Climate change, whitebark pine, and grizzly bears in the Greater Yellowstone Ecosystem, p. 343- 414. In: Wildlife Responses to Climate Change: North American Studies (Schnieder, S.H. and T.L. Root, eds.). Island Press, Washington DC.
  40. Kramer, K. 1994. Selecting a model to predict the onset of growth of Fagus sylvatica. Journal of Applied Ecology 31: 172-181. https://doi.org/10.2307/2404609
  41. Lammertsma, E.I., H.J. De Boer, S.C. Dekker, D.L. Dilcher, A.F. Lotter and F. Wagner-Cremer. 2011. Global $CO_2$ rise leads to reduced maximum stomatal conductance in Florida vegetation. Proceedings of the National Academy of Sciences of the United States of America 108: 4035- 4040.
  42. Lavergne, S., N. Mouquet, W. Thuiller and O. Ronce. 2010. Biodiversity and climate change. Annual Review of Ecology, Evolution, and Systematics 41: 321-350. https://doi.org/10.1146/annurev-ecolsys-102209-144628
  43. Lee, K., W. Kwon and S. Lee. 2009. A study on plant phenological trends in South Korea. Journal of The Korean Association of Regional Geographers 15: 337-350.
  44. Lloyd, J. and G.D. Farquhar. 1994. 13C discrimination during $CO_2$ assimilation by the terrestrial biosphere. Oecologia 99: 201-215. https://doi.org/10.1007/BF00627732
  45. Loarie, S.R., P.B. Duffy, H. Hamilton, G.P. Asner, C.B. Field and D.D. Ackerly. 2009. The velocity of climate change. Nature 462: 1052-1055. https://doi.org/10.1038/nature08649
  46. Long, S.P. and D.R. Ort. 2010. More than taking the heat: crops and global change. Current Opinion in Plant Biology 13: 241-248.
  47. Luo, Y. 2007. Terrestrial carbon-cycle feedback to climate warming. Annual Review of Ecology, Evolution, and Systematics 38: 683-712. https://doi.org/10.1146/annurev.ecolsys.38.091206.095808
  48. Luyssaert, S., E.-D. Schulze, A. Börner, A. Knohl, D. Hessenmöller, B.E. Law, P. Ciais and J. Grace. 2008. Oldgrowth forests as global carbon sinks. Nature 455: 213- 215. https://doi.org/10.1038/nature07276
  49. Mattson, D.J., K.C. Kendall and D.P. Reinhart. 2001. Whitebark pine, grizzly bears, squirrels, p. 121-136. In: Whitebark Pine Communities: Ecology and Restoration (Tomback, D.F., S.F. Arno and R.E. Keane, eds.). Island Press, Washington DC.
  50. Mayhew, P.J., G.B. Jenkins and T.G. Benton. 2008. A longterm association between global temperature and biodiversity, origination and extinction in the fossil record. Proceedings of The Royal Society Series B 275: 47-53.
  51. McLachlan, J.S., J.S. Clark and P.S. Manos. 2005. Molecular indicators of tree migration capacity under rapid climate change. Ecology 86: 2088-2098. https://doi.org/10.1890/04-1036
  52. Melillo, J.M., A.D. McGuire, D.W. Kicklighter, B. Moore, C.J. Vorosmarty and A.L. Schloss. 1993. Global climate change and terrestrial net primary production. Nature 363: 234-240. https://doi.org/10.1038/363234a0
  53. Memmott, J., P.G. Craze, N.M. Waser and M.V. Price. 2007. Global warming and the disruption of plant-pollinator interactions. Ecology Letters 10: 1-8. https://doi.org/10.1111/j.1461-0248.2006.01001.x
  54. Menzel, A., N. Estrella and P. Fabian. 2001. Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Global Change Biology 7: 657- 666.
  55. Menzel, A., T.H. Sparks, N. Eestrella, E. Koch, A. Aasa, R. Ahas, K. Alm-Kubler, P. Bissolli, O. Braslavska, A. Briede, F.M. Chmielewski, Z. Crepinsek, Y. Curnel, A. Dahl, C. Defila, A. Donnelly, Y. Filella, K. Jatczak, F. Mage, A. Mmstre, O. Nordli, J. Pe nuelas, P. Pirinen, V. Remisova, H. Scheifinger, M. Striz, A. Susnik, A.J.H. Vvan Vliet, F.-E. Wielgolask, S. Zach and A. Zust. 2006. European phenological response to climate change matches the warming pattern. Global Change Biology 12: 1969-1976.
  56. Millenium Ecosystem Assessment. 2005. Ecosystems and Human Well-being. Synthesis. World Resources Institute, Washington DC.
  57. Miller-Rushing, A.J., T. Katsuki, R.B. Primack, Y. Ishii, S.D. Lee and H. Higuchi. 2007. Impact of global warming on a group of related species and their hybrids: cherry tree (Rosaceae) flowering at Mt. Takao, Japan. American Journal of Botany 94: 1470-1478. https://doi.org/10.3732/ajb.94.9.1470
  58. MOE/KIER (Ministry of Environment of Korea/Korea Institute of Environmental Research). 2011. Korea Climate Change Assessment Report 2010. Korea Institute of Environmental Research.
  59. Nemani, R.R., C.D. Keeling, H. Hashimoto, W.M. Jolly, S.C. Piper, C.J. Tucker, R.B. Myneni and S.W. Running. 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300: 1560- 1563. https://doi.org/10.1126/science.1082750
  60. Niinemets, U., J. Flexas and J. Penuelas. 2011. Evergreens favored by higher responsiveness to increased $CO_2$. Trends in Ecology and Evolution 26: 136-142. https://doi.org/10.1016/j.tree.2010.12.012
  61. Norby, R.J. and D.R. Zak. 2011. Ecological lessons from freeair $CO_2$ enrichment (FACE) experiments. Annual Review of Ecology, Evolution, and Systematics 42: 181-203. https://doi.org/10.1146/annurev-ecolsys-102209-144647
  62. Ollerton, J., R. Winfree and S. Tarrant. 2011. How many flowering plants are pollinated by animals? Oikos 120: 321-326. https://doi.org/10.1111/j.1600-0706.2010.18644.x
  63. O'Neill, R.V. and J.R. Kahn. 2000. Homo economus as a keystone species. BioScience 50: 333-337. https://doi.org/10.1641/0006-3568(2000)050[0333:HEAAKS]2.3.CO;2
  64. Parmesan, C. and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37-42. https://doi.org/10.1038/nature01286
  65. Penuelas, J., I. Filella and P. Comas. 2002. Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology 8: 531-544.
  66. Poorter, H. and M. Perez-Soba. 2002. Plant growth at elevated $CO_2$, p. 489-496. In: Encyclopedia of Global Change. Vol. 2: The Earth System: Biological and Ecological Dimensions of Global Environmental Change (Mooney, H.A. and J.G. Canadell, eds.). John Wiley, Chichester.
  67. Potts, S.G., J.C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger and W.E. Kunin. 2010. Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution 25: 345-353. https://doi.org/10.1016/j.tree.2010.01.007
  68. Primack, R.B. 1980. Variation in the phenology of natural populations of montane shrubs in New Zealand. Journal of Ecology 68: 849-862. https://doi.org/10.2307/2259460
  69. Primack, R.B., H. Higuchi and A.J. Miller-Rushing. 2009. The impact of climate change on cherry trees and other species in Japan. Biological Conservation 142: 1943- 1949. https://doi.org/10.1016/j.biocon.2009.03.016
  70. Pyke, C.R. 2004. Habitat loss confounds climate change impacts. Frontiers of Ecology and Environment 2: 178- 182. https://doi.org/10.1890/1540-9295(2004)002[0178:HLCCCI]2.0.CO;2
  71. Rojstaczer, S., S.M. Sterling and N.J. Moore. 2001. Human appropriation of photosynthesis products. Science 294: 2549-2552. https://doi.org/10.1126/science.1064375
  72. Root, T.L., J.T. Price, K.R. Hall, S.H. Schneider, C. Rosenzweig and J.A. Pounds. 2003. Fingerprints of global warming on wild animals and plants. Nature 421: 57-60. https://doi.org/10.1038/nature01333
  73. Sage, R.F. and D.S. Kubien. 2003. Quo vadis $C_4$? An ecophysiological perspective on global change and the future of $C_4$ plants. Photosynthesis Research 77: 209-225. https://doi.org/10.1023/A:1025882003661
  74. Seastedt, T.R., R.J. Hobbs and K.N. Suding. 2008. Management of novel ecosystems: are novel approaches required? Frontiers in Ecology and Environment 6: 547-553. https://doi.org/10.1890/070046
  75. Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M.M.B. Tignor, H. LeRoy Miller Jr. and Z. Chen, 2007. Climate Change 2007: The Physical Science Basis. Contribution of the Working Group I to the Fourth Assessment Report of the IPCC. Cambridge Univ. Press, Cambridge.
  76. Steffen, W., A. Sanderson, P.D. Tyson and J. Jager. 2004. Global Change and the Earth System: A Planet under Pressure. Springer, Berlin.
  77. Thackeray, S.J., T.H. Sparks, M. Frederiksen, S. Burthe, P.J. Bacon, J.R. Bell, M.S. Botham, T.M. Brereton, P.W. Bright, L. Carvalho, T. Clutton-Brock, A. Dawson, M. Edwards, J.M. Elliott, R. Harrington, D. Johns, I.D. Jones, J.T. Jones, D.I. Leech, D.B. Roy, W.A. Scott, M. Smith, R.J. Smithers, I.J. Winfield and S. Wanless. 2010. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Global Change Biology 16: 3304-3313
  78. Thomas, C.D., A. Cameron, R.E. Green, M. Bakkenes, L.J. Beaumont, Y.C. Collingham, B.F.N. Erasmus, M.F. de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A.S. van Jaarsveld, G.F. Midgley, L. Miles, M.A. Ortega-Huerta, A.T. Peterson, O.L. Phillips and S.E. Williams. 2004. Extinction risk from climate change. Nature 427: 145-148. https://doi.org/10.1038/nature02121
  79. Thuiller, W., S. Lavorel, M.B. Araújo, M.T. Sykes and I.C. Prentice. 2005. Climate change threats to plant diversity in Europe. Proceedings of National Academy of Sciences of the United States of America 102: 8245-8250.
  80. Vanbergen, A.J. and the Insect Pollinators Initiative. 2013. Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment 11: 251- 259. https://doi.org/10.1890/120126
  81. Visser, M. and L. Holleman. 2001. Warmer springs disrupt the synchrony of oak and winter moth phenology. Proceedings of The Royal Society of London Series B 268: 289-294.
  82. Vitousek, P.M., C.M. D'Antonio, L.L. Loope, M. Rejmanek and R. Westbrooks. 1997. Introduced species: a significant component of human-caused global change. New Zealand Journal of Ecology 21: 1-16.
  83. Vitousek, P.M., P.R. Ehrlich, A.H. Ehrlich and P.A. Matson. 1986. Human appropriation of the products of photosynthesis. BioScience 36: 363-373. https://doi.org/10.2307/1310255
  84. von der Lippe, M. and I. Kowarik. 2007. Long-distance dispersal of plants by vehicles as a driver of plant invasions. Conservation Biology 21: 986-996. https://doi.org/10.1111/j.1523-1739.2007.00722.x
  85. Walther, G.-R. 2004. Plants in a warmer world. Perspectives in Plant Ecology, Evolution, and Systematics 6: 169-185.
  86. Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Parmesank, T.J.C. Beebee, J.-M. Fromentin, O. Hoegh-Guldberg and F. Bairlein. 2002. Ecological responses to recent climate change. Nature 416: 389-395. https://doi.org/10.1038/416389a
  87. Willis, C.G., B.R. Ruhfel, R.B. Primack, A.J. Miller-Rushing, J.B. Losos and C.C. Davis. 2010. Favorable climate change response explains non-native species' success in Thoreau's woods. PLoS ONE 5: e8878. (doi: 10.1371/ journal.pone.0008878).
  88. Willis, K.J. and G.M. MacDonald. 2011. Long-term ecological records and their relevance to climate change predictions for a warmer world. Annual Review of Ecology, Evolution, and Systematics 42: 267-287. https://doi.org/10.1146/annurev-ecolsys-102209-144704
  89. Xu, L., R.B. Myneni, F.S. Chapin III, T.V. Callaghan, J.E. Pinzon, C.J. Tucker, Z. Zhu, J. Bi, P. Ciais, H. Tømmervik, E.S. Euskirchen, B.C. Forbes, S.L. Piao, B.T. Anderson, S. Ganguly, R.R. Nemani, S.J. Goetz, P.S.A. Beck, A.G. Bunn, C. Cao and J.C. Stroeve. 2013. Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change 3: 1-6 (DOI: 10. 1038/NCLIMATE1836).
  90. Young, B., E. Byers, K. Gravuer, K. Hall, G. Hammerson and A. Redder. 2010. Guidelines for Using the Nature Serve Climate Change Vulnerability Index. NatureServe, Arlington.
  91. Yun, J. 2006. Climate changes impact on the flowering season of Japanese cherry (Prunus serrulata var. spontanea) in Korea during 1941-2100. Korean Journal of Agricultural and Forest Meteorology 8: 68-76.
  92. Yun, J.-H., J.-H. Kim, K.-H. Oh and B.-Y. Lee. 2011. Distributional change and climate condition of warm-temperate evergreen broad-leaved trees in Korea. Korean Journal of Environment and Ecology 25: 47-56.
  93. Yun, J.-H., K. Nakao, I. Tsuyama, M. Higa, T. Matsui, C.- H. Park, B.-Y. Lee and N. Tanaka. 2013. Does future climate change facilitate expansion of evergreen broadleaved tree species in the human-disturbed landscape of the Korean peninsula? Implication for monitoring design of the impact assessment. Journal of Forestry Research 18 (doi: 10.1007/s10310-013-0401-6).
  94. Zhao, M.S. and S.W. Running. 2010. Drought-induced reduction in global terrestrial net primary production from 2000 to 2009. Science 329: 940-943. https://doi.org/10.1126/science.1192666
  95. Zhou, L., C.J. Tucker, R.K. Kaufmann, D.A. Slayback, N.V. Shabanov and R.B. Myneni. 2001. Variation in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research 106: 20269-20283.
  96. http://co2now.org/ Scripps $CO_2$ Data - Mauna Loa Observatory. Accessed on June, 2013.