DOI QR코드

DOI QR Code

A Preliminary Trophic Flow Model for Gwangyang Bay, Korea

광양만 예비 영양류 모형

  • Kang, Yun-Ho (Aquaculture Research Center, Yosu National University)
  • 강윤호 (여수대학교 수산증양식연구센터)
  • Published : 2005.06.01

Abstract

A preliminary quantitative model of the trophic structure in Gwangyang bay, Korea was obtained using ECOPATH and data from relevant studies to date in the region. The model integrates and analyzes biomass, food spectrum, trophic interactions and the key trophic pathways of the system. The bay model comprises 9 groups of benthic primary producer, phytoplankton, zooplankton, benthos, bivalve, pelagic fish, demersal fish and piscivorous fish. The total system throughput was estimated at $2.4\;kgWW/m^2/yr$, including a consumption of $41\%$, exports of $9\%$, respiratory flows of $24\%$ and flows into detritus of $26\%$. All of which originate from primary producers measured at $52\%$ and detritus of $48\%$. The total biomass was seen to be high compared to the levels of Somme, Delaware, Chesapeake Bays and Seine Estuary. This seems to be possibly due to artificial bivalve aquaculture and overestimation of benthos and benthic primary producer groups. The deviation can be calibrated by neglecting aquaculture and decreasing the habitat area for the groups. The trophic network of the bay shows a low level of recycling and organization as indicated by Finn's cycling index $3.3\%$, Ascendancy $3.1\;kgC/m^2/yr$ bits, Capacity $5.1\;kgC/m^2/yr$ bits and Redundancy $2.2\;kgC/m^2/yr$ bits. A high relative ascendancy of $62\%$ and a low internal relative ascendancy of $18\%$ indicate the system is not fully organized and stable towards disturbances, depending upon external connections. Although the model should be continuously provided with field data and calibrated further in depth, this study is the first trophic model applied to the region. The model can be a useful tool to understand the ecosystem in a quantitative manner.

Keywords

References

  1. Allen, R.R. 1971. Relation between production and biomass. J. Fish. Res. Bd. Can., 28, 1573-1581 https://doi.org/10.1139/f71-236
  2. Arias-Gonzalez, J.E., B. Delesalle, B. Salvat and R.. Galzin. 1997. Trophic functioning of the Tiahura reef sector, Moorea Island, French Polynesia. Coral Reefs, 16, 231-246 https://doi.org/10.1007/s003380050079
  3. Baeck, G.W. and S.H. Huh. 2002. Feeding habits of tongue fish, Cynoglossus joyneri collected in the coastal waters off Yous, Korea. Kor. J. Ichthyol., 14, 234-239
  4. Baeck, G.W. and S.H. Huh. 2004. Feeding habits of robust tonguefish, Cynoglossus robustus collected in the coastal waters of Yosu, Korea. Kor. J. Ichthyol., 16, 341-347
  5. Baird, D. and R.E. Ulanowicz. 1993. Comparative study on the trophic structure, cycling and ecosystem properties of four tidal estuaries. Mar. Eco. Prog. Ser., 99, 221-237 https://doi.org/10.3354/meps099221
  6. Barnes, R.S.F. and R.N. Hughes. 1988. An Introduction to Marine Ecology. Blackwell Scientific Publications, Oxford, pp. 270
  7. Cha, S.S. and K.J. Park. 1994. Distribution of the ichthyoplankton in Kwangyang Bay. Kor. J. Ichthyol., 6, 60-70
  8. Cha, S.S. and K.J. Park. 1997. Seasonal changes in species composition of fishes collected with a bottom trawl in Kwangyang Bay, Korea. Kor. J. Ichthyol, 9, 235-243
  9. Chavez, E.A., M. Gardunno and F. Arreguin-Sanchez. 1993. Trophic dynamic structure of Celestun Lagoon, Southern Gulf of Mexico. In: Trophic Models of Aquatic Ecosystems, ICLARM Conf. Proc., Christensen, V. and D. Pauly, eds., pp. 186-192
  10. Cho, K.A., I.S. Wui, and C.I. Choi. 1994. Ecological study of phytoplankton in the Kwang-Yang Bay. Kor. J. Environ. Biol., 12, 137-150
  11. Choi, J.W., S. Hyun and M. Chang. 2003. The summer benthic environmental conditions assessed by the functional groups of macrobenthic fauna in Gwangyang Bay, southern coast of Korea. Kor. J. Environ. Biol., 21, 101-113
  12. Christensen, V. and D. Pauly. 1992. Ecopath II - a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol. Mod., 61, 169-185 https://doi.org/10.1016/0304-3800(92)90016-8
  13. Christensen, V. and D. Pauly. 1993. On steady-state modelling of ecosystems. In: Trophic Models of Aquatic Ecosystems, ICLARM Conf. Proc., Christensen, V. and D. Pauly, eds., pp. 14-19
  14. Christensen, V. 1995. Ecosystem maturity-towards quantification. Ecol. Mod., 77, 3-32 https://doi.org/10.1016/0304-3800(93)E0073-C
  15. Finn, J.T. 1980. Flow analysis of models of the Hubbard Brook ecosystem. Ecology, 61, 562-571 https://doi.org/10.2307/1937422
  16. Froese, R. and C. Binohlan. 2000. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. J. Fish Biol., 56, 758-773 https://doi.org/10.1111/j.1095-8649.2000.tb00870.x
  17. Froese, R., D. Pauly and Editors. 2003. FishBase. World Wide Web Electronic Publication. www.fishbase.org., version 30, October 2003
  18. Gonzalez-Liboy, J.A. 1979. An examination of the present condition of seagrass in La Parguera, Puerto Rico. Final report, Dep. Nat. Res. USFWS, Atlanta, GA., pp. 87
  19. Heymann, J.J. and D. Baird. 2000. Network analysis of the northern Benguela ecosystem by means of NETWRK and ECOPATH. Eco. Mod., 131, 97-119 https://doi.org/10.1016/S0304-3800(00)00275-1
  20. Huh, S.H. and G.W. Baeck. 2000. Feeding habits of blotched eelpout, Zoarces gilli collected in the coastal water off Gadeok-do, Korea. Kor. J. Ichthyol., 12, 54-61
  21. Huh, S.H. and S.N. Kwaka. 1997. Feeding habits of Pholis nebulosa. Kor. J. Ichthyol., 9, 22-29
  22. Huh, S.H. and S.N. Kwakb. 1997. Feeding habits of Leiognathus nuchalis in the eelgrass (Zostera marina) bed in Kwangyang Bay. Kor. J. Ichthyol., 9, 221-227
  23. Huh, S.H. and S.N. Kwak. 1998. Feeding habits of juvenile Takifu nipholes in eelgrass (Zostera marina) bed in Kwangyang Bay. J. Kor. Fish. Soc., 31, 806- 812
  24. Huh, S.H. and S.N. Kwak. 1999. Feeding habits of Juvenile Acanthosgobius flavimanus in the eelgrass (Zostera marina) bed in Kwangyang Bay. J. Kor. Fish. Soc., 32, 10-17
  25. Hyun, S., W.H. Paeng and T. Lee. 2004. Characteristics of surficial sediment and benthic environments based on geochemical data in Gwangyang Bay, Korea, Kor. J. Environ. Biol., 22, 93-102
  26. Jang, M.C., P.G. Jang, K. Shin, D.W. Park and M. Chang. 2004. Seasonal variation of zooplankton community in Gwangyang Bay. Kor. J. Environ. Biol., 22, 11-29
  27. Kang, Y.H. 2003. Carrying capacity and fishery resource release in the Bangjukpo surfzone ecosystem. J. Kor. Fish. Soc., 36, 669-675
  28. Kang, H.W. and K.W. Lee. 1996. Trace metal concentrations and sedimentation rates of Kwangyang, Masan and Ulsan Bay sediments. J. Kor. Soc. Wat. Qual., 12, 455-461
  29. Kido, K. 1988. Phylogeny of the family Liparididae, with the taxonomy of the species found around Japan. Mem. Fac. Fish. Hokkaido Univ., 35,. 125-256
  30. Kwak, S.N. and S.H. Huh. 2002. Feeding habits of Platycephalus indicus in eelgrass (Zostera marina) beds in Kwangyang Bay. Kor. J. Ichthyol., 14, 29-35
  31. Kwak, S.N. and S.H. Huh. 2003. Feeding habit of Limanda yokohamae in the eelgrass (Zostera marina) bed in Kwangyang Bay. J. Kor. Fish Soc., 36, 522-527
  32. Kwon, K.Y, C.H. Moon, C.K. Kang and Y.N. Kim. 2002. Distribution of particulate organic matters along the salinity gradients in the Seomjin River estuary. J. Kor. Fish. Soc., 35, 86-96
  33. Larkin, P.A. and W. Gazey. 1982. Application of ecological simulation models to management of tropical multispecies of fisheries. In: Theory and Management of Tropical Fisheries, ICLARM Conf. Proc., D. Pauly and G.I. Murphy, eds., pp. 123-140
  34. Lee, G.Y, J.Y Hwang, K.K. Jung and J.M. Choi. 1996. Sedimentary environment change in Kwangyang Bay and Y osu Sound-based on sediment characteristics and clay minerals. J. Kor. Earth Sci. Soc., 17,407-416
  35. Lee, Y.S., J.S. Lee, R.H. Jung, S.S. Kim, W.J. Go, K.Y. Kim and J. Park. 2001. Limiting nutrient on phytoplankton growth in Gwangyang Bay. J. Kor. Soc. Ocenanol., 6, 201-210
  36. Lee, T.W., H.T. Moon and S.S. Choi. 1997. Changes in species composition of fish in Chonsu Bay (II) surf zone fish. Kor. J. Ichthyol., 9,79-90
  37. Lee, Y.S., J. Yu, K.E. Kwon, Y.K. Choi and E.S. Cho. 2004. Temporal and spatial variations of limiting nutrient on phytoplankton growth in the Gwangyang Bay, Korea. J. Kor. Soc. Environ. Eng., 26, 890-895
  38. Li, S. and H. Wang. 1995. Fauna Sinica. Osteichthyes. Pleuronectiformes. Science Press, Beijing, China., pp. 433
  39. MacDonald, J.S. and R.H. Green. 1983. Redundancy of variables used to describe importance of prey species in fish diets. Can. J. Fish. Aquat. Sci., 40, 635-637 https://doi.org/10.1139/f83-083
  40. Masuda, H., K. Amaoka, C. Araga, T. Uyeno and T. Yoshino. 1984. The fishes of the Japanese Archipelago. 1. Tokai Univ. Press, Tokyo, Japan, pp. 437
  41. MCT (Ministry of Construction and Transportation, Korea). 1989. Integrated Maintenance Plan for Seomjin River System, pp. 337
  42. Monaco, M.E. and R.E. Ulanowicz. 1997. Comparative ecosystem trophic structure of three U.S. mid-Atlantic estuaries. Mar. Bio. Prog. Ser., 161, 239-254 https://doi.org/10.3354/meps161239
  43. NORI (National Oceanographic Research Institute, Korea). 2005. Marine Chart No. 256, Gwang Yang Man and Yeoja Man
  44. Oh, S.H. 2003. Species composition and community structure of fishes in Kwangyang Bay, Korea. Ph.D. Thesis, Yosu Natl. Univ., Yeosu, Korea, pp. 220
  45. Palomares, M.L.D. and D. Pauly. 1999. Predicting the food consumption of fish populationsas functions of mortality, food type, morphometrics, temperature and salinity. Mar. Freshwat. Res., 49, 447-453
  46. Park, K.J. and S.S. Chao 1995. Food organisms of postlarvae of Japanese anchovy (Engraulis japonica) in Kwangyang Bay. J. Kor. Fish Soc., 28, 247-252
  47. Park, K.J., S.S. Cha and S.H. Huh, 1996. Food organisms of the postlarval shad (Konosirus punctatus) in Kwangyang Bay. J. Kor. Fish Soc., 29, 450-454
  48. Pauly, D. 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. J. Cons. Int. Explor. Mer., 39, 175-192 https://doi.org/10.1093/icesjms/39.2.175
  49. Pauly, D., M.L. Soriano-bartz and M.L.D. Palomares. 1993. Improved construction, parameterization and interpretation of steady-state ecosystem models. In: Trophic Models of Aquatic Ecosystems. ICLARM Conf. Proc., Christensen, V. and D. Pauly, eds., pp. 1-13
  50. Polovina, J.J. 1984. Model of a coral reef ecosystem. Part I. The ECOPATH model and its application to French Frigate Shoals. Coral Reefs, 3, 1-11 https://doi.org/10.1007/BF00306135
  51. Robin, C.R., R.M. Bailey, C.E. Bond, J.R. Brooker, E.A. Lachner, R.N. Lea and W.B. Scott. 1991. World fishes important to North Americans. Exclusive of species from the continental waters of the United States and Canada. Am. Fish. Soc. Spec. Publ., 21, pp. 243
  52. Rosado-Solorazano, R. and Sergio A. Guzman del Proo. 1998. Preliminary trophic structure model for Tampamachoco lagoon, Veracruz, Mexico. Ecol. Mod., 109, 141-154 https://doi.org/10.1016/S0304-3800(98)00011-8
  53. Rybarczyk, H. and B. Elkaim. 2003. An analysis of the trophic network of a macrotidal estuary: the Seine Estuary (Eastern Channel, Normandy, France). Est. Coast. Shelf Sci., 58, 775-791 https://doi.org/10.1016/S0272-7714(03)00184-7
  54. Shao, K.T. and P.L. Lin. 1991. Fishes of freshwater and estuary. Encyclopedia of Field Guide in Taiwan. Recreation Press, Co., Ltd., Taipei., 31, pp. 240
  55. Sparre, P. 1991. Introduction to multispecies virtual population analysis. ICES Mar. Sci. Symp., 193, 12-21
  56. Ulanowicz, R.E. 1986. Growth and Development: Ecosystem Phenomenology. Springer Verlag, New York, pp. 203
  57. Ulanowicz, R.E. and J.S. Norden. 1990. Symmetrical overhead in flow and networks. Int. J. Systems Sci., 21, 429-437 https://doi.org/10.1080/00207729008910372
  58. Ulancowicz, R.E. and C.J. Puccia. 1990. Mixed trophic impacts in ecosystems. Coenoses, 5, 7-16
  59. Walters, C., V. Christensen and D. Pauly. 1997. Structuring dynamics models of exploited ecosystems from trophic mass-balance assessments. Rev. Fish Bio. Fish., 7. 139-172 https://doi.org/10.1023/A:1018479526149
  60. Whitehead, P.J.P. 1985. FAO species catalogue. Vol. 7. Clupeoid fishes of the world (suborder Clupeioidei). An annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, shads, anchovies and wolf-herrings. Part 1 - Chirocentridae, Clupeidae and Pristigasteridae. FAO Fish. Synop., 125(7/1), pp. 1-303
  61. Wilson, F., J.G. Field and K.H. Mann. 1989. Network analysis in marine ecology: methods and applications coastal and estuarine studies 32. Springer-Verlag, Heidelberg, pp. 155
  62. Wolff, M., V. Koch and V. Isaac. 2000. A trophic flow model of the Caete mangrove estuary (North Brazil) with considerations for the sustainable use of its resources. Est. Coast. Shelf Sci., 50, 789-803 https://doi.org/10.1006/ecss.2000.0611
  63. Yosu. 2002. Final report of fishery impact assessment in Yosu, Gwangyang Bay, Korea, pp. 800
  64. Zhang, C.I. 2002. Prospect of ecosystem-based fisheries resource management. J. Kor. Soc. Fish. Res., 5, 73-90
  65. Zhang, C.I. and S.C. Yoon. 2003. Effects of climatic regime shift on the structure of marine ecosystem in the southwestern east sea during the 1970s. J. Kor. Fish. Soc., 36, 389-401

Cited by

  1. Marine Environmental Studies in Gwangyang Bay, Korea: Past, Present, and Future Direction vol.24, pp.4, 2021, https://doi.org/10.7846/jkosmee.2021.24.4.161