• Title/Summary/Keyword: triple-quadrupole

Search Result 49, Processing Time 0.028 seconds

Anti-inflammatory Activity of Standardized Fraction from Inula helenium L. via Suppression of NF-κB Pathway in RAW 264.7 Cells

  • Chun, Jaemoo;Song, Kwangho;Kim, Yeong Shik
    • Natural Product Sciences
    • /
    • v.25 no.1
    • /
    • pp.16-22
    • /
    • 2019
  • Inula helenium L. is rich source of eudesmane-type sesquiterpene lactones, mainly alantolactone and isoalantolactone, which have the various pharmacological functions. In this study, we examined the inhibitory effects of nitric oxide (NO) production of hexane, methylene chloride, ethyl acetate, butanol, and water fractions from I. helenium and investigated the anti-inflammatory effect of hexane fraction of I. helenium (HFIH) in LPS-induced RAW 264.7 cells. Quantification of alantolactone and isoalantolactone from HFIH was carried out for the standardization by multiple reaction monitoring using triple quadrupole mass spectrometer. HFIH significantly inhibited inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) protein as well as their downstream products NO and prostaglandin $E_2$ ($PGE_2$) in LPS-stimulated RAW 264.7 cells. Moreover, HFIH suppressed $NF-{\kappa}B$ transcriptional activity by decreasing the translocation of p65 to the nucleus. The in vivo study further confirmed that HFIH attenuated the paw edema induced by carrageenan in an acute inflammation model. These findings suggest that HFIH may be useful as a promising phytomedicine for inflammatory-associated diseases.

Simultaneous Determination of Anthraquinone, Flavonoids, and Phenolic Antidiabetic Compounds from Cassia auriculata Seeds by Validated UHPLC Based MS/MS Method

  • Girme, Aboli;Saste, Ganesh;Chinchansure, Ashish;Joshi, Swati;Kunkulol, Rahul;Hingorani, Lal;Patwardhan, Bhushan
    • Mass Spectrometry Letters
    • /
    • v.11 no.4
    • /
    • pp.82-89
    • /
    • 2020
  • A systematic isolation and characterization study for Cassia auriculata (CA) seeds resulted in identifying antidiabetic compounds 1,3,8-trihydroxyanthraquinone and quercetin, quercetin-3-O-rutinoside, gallic acid, caffeic acid, ferulic acid, and ellagic acid. The ultra-high-performance liquid chromatography based triple quadrupole mass spectrometry methodology was developed and validated for simultaneous identification and confirmation of these compounds from CA seeds. Multiple reaction monitoring (MRM) based quantification method was developed with MRM optimizer software for MS1 and MS2 mass analysis. The method was optimized on precursor ions and product ions with the ion ratio of each compound. The calibration curves of seven bioactive analytes showed excellent linearity (r2 ≥ 0.99). The quantitation results found precise (RSD, < 10 %) with good recoveries (84.58 to 101.42%). The matrix effect and extraction recoveries were found within the range (91.66 to 102.11%) for the CA seeds. This is the first MS/MS-based methodology applied to quantifying seven antidiabetic compounds in CA seeds and its extract for quality control purposes.

Lipid N-formylation Occurs During Fixation with Formalin

  • Kim, Min Jung;Lim, Heejin;Kim, Muwoong;Choi Yuri;Nguyen, Thy N.C.;Park, Seung Cheol;Kim, Kwang Pyo;Jung, Junyang;Kim, Min-Sik
    • Mass Spectrometry Letters
    • /
    • v.13 no.2
    • /
    • pp.35-40
    • /
    • 2022
  • Human tissues and organs can be preserved intact by fixation with formalin for the future analysis of biomolecules of interest. With the advances in high-throughput methods, numerous protocols have been developed and optimized to attain the most pathophysiological information out of biomolecules, including RNA and proteins, in formalin-fixed samples. However, there is no systematic study to examine the effects of formalin fixation on the lipidome of biological samples in a global fashion. In this study, we conducted a mass spectrometry-based analysis to survey the alteration in the lipidome of mice brains by fixation methods. A total of 308 lipids were quantitatively measured using triple quadrupole mass spectrometry. We found that most were unchanged after formalin fixation except for a few lipid classes such as phosphatidylethanolamine.

A quantitative method for detecting meat contamination based on specific polypeptides

  • Feng, Chaoyan;Xu, Daokun;Liu, Zhen;Hu, Wenyan;Yang, Jun;Li, Chunbao
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1532-1543
    • /
    • 2021
  • Objective: This study was aimed to establish a quantitative detection method for meat contamination based on specific polypeptides. Methods: Thermally stable peptides with good responses were screened by high resolution liquid chromatography tandem mass spectrometry. Standard curves of specific polypeptide were established by triple quadrupole mass spectrometry. Finally, the adulteration of commercial samples was detected according to the standard curve. Results: Fifteen thermally stable peptides with good responses were screened. The selected specific peptides can be detected stably in raw meat and deep processed meat with the detection limit up to 1% and have a good linear relationship with the corresponding muscle composition. Conclusion: This method can be effectively used for quantitative analysis of commercial samples.

Quantitative Evaluation of Radix Astragali through the Simultaneous Determination of Bioactive Isoflavonoids and Saponins by HPLC/UV and LC-ESI-MS/MS

  • Kim, Jin-Hee;Park, So-Young;Lim, Hyun-Kyun;Park, Ah-Yeon;Kim, Ju-Sun;Kang, Sam-Sik;Youm, Jeong-Rok;Han, Sang-Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1187-1194
    • /
    • 2007
  • The three major active isoflavonoids (calycosin-7-O-β -glucoside, isomucronulatol 7-O-β-glucoside, formononetin) and two main saponins (astragaloside I, astragaloside IV) in an extract of Radix Astragali were determined using rapid, sensitive, reliable HPLC/UV and LC-ESI-MS/MS methods. The separation conditions employed for HPLC/UV were optimized using a phenyl-hexyl column (4.6 × 150 mm, 5 μm) with the gradient elution of acetonitrile and water as the mobile phase at a flow rate of 1.0 mL/min and a detection wavelength of 230 nm. The specificity of the peaks was determined using a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization (ESI) source that was operated in multiple reaction monitoring (MRM) in the positive mode. These methods were fully validated with respect to the linearity, accuracy, precision, recovery and robustness. The HPLC/UV method was applied successfully to the quantification of three major isoflavonoids in the extract of Radix Astragali. The results indicate that the established HPLC/UV and LC-ESI-MS/MS methods are suitable for the quantitative analysis and quality control of multi-components in Radix Astragali.

Magnetic and CMR Properties of Sulphospinel ZnxFe1-xCr2S4 (Spinel계 유화물 ZnxFe1-xCr2S4의 CMR 특성과 자기적 성질)

  • Park, Jae-Yun;Bak, Yong-Hwan;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.137-141
    • /
    • 2005
  • The CMR properties and magnetic properties of sulphospinels $Zn_xFe_{1-x}Cr_2S_4$ have been explored by X-ray diffraction, magnetoresistance measurement, and $M\ddot{o}ssbauer$ spectroscopy. The crystal structures in the range of x=0.05, 0.1, 0.2 are cubic at room temperature. Magnetoresistance measurement indicates that these system is semiconducting below about 160 K. The temperature of maximum magnetoresistance is almost consistent with Curie temperature. The Zn substitutions for Fe occur to increase the Jahn-Teller relaxation and the electric quadrupole shift. CMR properties could be explained with Jahn-Teller effect, and half-metallic electronic structure, which is different from both the double exchange interactions of manganite La-Ca-Mn-O system and the triple exchange interactions of chalcogenide $Cu_xFe_{1-x}Cr_2S_4$.

Pentafluorophenylprophyl Ligand-based Liquid Chromatography-Tandem Mass Spectrometric Method for Rapid and Reproducible Determination of Metformin in Human Plasma

  • Yang, Jeong Soo;Oh, Hyeon Ju;Jung, Jin Ah;Kim, Jung-Ryul;Kim, Tae-Eun;Ko, Jae-Wook;Lee, Soo-Youn;Huh, Wooseong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3284-3288
    • /
    • 2013
  • This paper describes first development and validation of pentafluorophenylprophyl ligand-based liquid chromatography coupled to tandem mass spectrometry (PFPLC-MS/MS) method to determine metformin, a highly polar compound, in human plasma. Metformin and Phenformin (internal standard) were extracted from human plasma 50 ${\mu}L$ with a single-step protein precipitation. The chromatographic separation was performed using a linear gradient elution of mobile phase involving 5.0 mM ammonium formate solution with 0.1% formic acid (A) and acetonitrile (B) over 3.0 min of run time on a Phenomenex Luna PFP column. The detection was performed using a triple-quadrupole tandem mass spectrometer (Waters Quattro micro) with electrospray ionization in the mode of positive ionization and multiple-reaction monitoring (MRM). The developed method was validated with 5.0 ng/mL of lower limit of quantification (LLOQ). The calibration curve was linear over 5-3000 ng/mL of the concentration range ($R^2$ > 0.99). The specificity, selectivity, carry-over effect, precision, accuracy and stability of the method met the acceptance criteria. The method developed in this study had had rapidness, simplicity and ruggedness. The reliable method was successfully applied to high throughput analysis of real samples for a practical purpose of a pharmacokinetic study.

Rapid Determination of Imatinib in Human Plasma by Liquid Chromatography-Tandem Mass Spectrometry: Application to a Pharmacokinetic Study

  • Yang, Jeong Soo;Cho, Eun Gi;Huh, Wooseong;Ko, Jae-Wook;Jung, Jin Ah;Lee, Soo-Youn
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2425-2430
    • /
    • 2013
  • A simple, fast and robust analytical method was developed to determine imatinib in human plasma using liquid chromatography-tandem mass spectrometry with electrospray ionization in the positive ion mode. Imatinib and labeled internal standard were extracted from plasma with a simple protein precipitation. The chromatographic separation was performed using an isocratic elution of mobile phase involving 5.0 mM ammonium formate in water-5.0 mM ammonium formate in methanol (30:70, v/v) over 3.0 min on reversed-stationary phase. The detection was performed using a triple-quadrupole tandem mass spectrometer in multiple-reaction monitoring mode. The developed method was validated with lower limit of quantification of 10 ng/mL. The calibration curve was linear over 10-2000 ng/mL ($R^2$ > 0.99). The method validation parameters met the acceptance criteria. The spiked samples and standard solutions were stable under conditions for storage and handling. The reliable method was successfully applied to real sample analyses and thus a pharmacokinetic study in 27 healthy Korean male volunteers.

Identification of Pitfalls Related to the Analysis of Liquid Chromatography-Tandem Mass Spectrometry and Liquid Chromatography-Time of Flight Mass Spectrometry (액체크로마토그래프-질량분석기를 이용한 정성 및 정량 오류의 확인)

  • Kwon, Jin-Wook;Cho, Yoon-Jae;Rhee, Gyu-Seek
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.3
    • /
    • pp.230-237
    • /
    • 2015
  • BACKGROUND: To identify the sources of inaccuracy in LC/MS/MS methods used in the routine quantitation of small molecules are described and discussed. METHODS AND RESULTS: Various UPLC coupled to triple quadrupole mass spectrometer and time of flight (TOF) were used to identify the potential sources of inaccuracy and inducing the pitfalls of qualification and quntitation during the veterinary drug residue analysis. Some of stable isotope labelled veterinary drugs, which were used as internal standards, presented "cross-talk", regardless of manufactures of mass spectrometer and types of spectrometer. Group of sulfonamides also presented inaccuracy qualification and quantitation due to the multi-residue analytical method with the same fragment ions at the close retention times. CONCLUSION: The phenomena of "cross-talk" occurring between subsequently monitored transition from stable isotope labelled and isotope non-labelled authentic chemical were identified. To prevent errors and achieve more accurate data during the analysis of small molecules by LC/MS/MS SRM method, Followings should be taken care of and kept checking; purity and concentration of stable isotope as an internal standard, prevention of carry-over during the separation in column, minimizing the ion suppression by matrix effect, identification of retention time, precursor ion and product ion, and full knowledge of data processing including smoothing and peak integration.

Development and validation of LC-MS/MS for bioanalysis of hydroxychloroquine in human whole blood

  • Park, Jung Youl;Song, Hyun Ho;Kwon, Young Ee;Kim, Seo Jin;Jang, Sukil;Joo, Seong Soo
    • Journal of Biomedical and Translational Research
    • /
    • v.19 no.4
    • /
    • pp.130-139
    • /
    • 2018
  • This study aimed to analyze a high-performance liquid chromatography (HPLC) separation using a pentafluorophenyl column of parent drug hydroxychloroquine (HCQ) and its active metabolite, desethylhydroxchloroquine (DHCQ) applying to determine bioequivalence of two different formulations administered to patients. A rapid, simple, sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for bioanalysis of HCQ and its metabolite DHCQ in human whole blood using deuterium derivative $hydroxychloroquine-D_4$ as an internal standard (IS). A triple-quadrupole mass spectrometer was operated using electrospray ionization in multiple reaction monitoring (MRM) mode. Sample preparation involves a two-step precipitation of protein techniques. The removed protein blood samples were chromatographed on a pentafluorophenyl (PFP) column ($50mm{\times}4.6mm$, $2.6{\mu}m$) with a mobile phase (ammonium formate solution containing dilute formic acid) in an isocratic mode at a flow rate of 0.45 mL/min. The standard curves were found to be linear in the range of 2 - 500 ng/mL for HCQ; 2 - 2,000 ng/mL for DHCQ in spite of lacking a highly sensitive MS spectrometry system. Results of intra- and inter-day precision and accuracy were within acceptable limits. A run time of 2.2 min for HCQ and 2.03 min for DHCQ in blood sample facilitated the analysis of more than 300 human whole blood samples per day. Taken together, we concluded that the assay developed herein represents a highly qualified technology for the quantification of HCQ in human whole blood for a parallel design bioequivalence study in a healthy male.