Browse > Article
http://dx.doi.org/10.5478/MSL.2022.13.2.35

Lipid N-formylation Occurs During Fixation with Formalin  

Kim, Min Jung (Department of Applied Chemistry, College of Applied Science, Kyung Hee University)
Lim, Heejin (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Kim, Muwoong (Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University)
Choi Yuri (Department of Applied Chemistry, College of Applied Science, Kyung Hee University)
Nguyen, Thy N.C. (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Park, Seung Cheol (Department of Applied Chemistry, College of Applied Science, Kyung Hee University)
Kim, Kwang Pyo (Department of Applied Chemistry, College of Applied Science, Kyung Hee University)
Jung, Junyang (Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University)
Kim, Min-Sik (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Publication Information
Mass Spectrometry Letters / v.13, no.2, 2022 , pp. 35-40 More about this Journal
Abstract
Human tissues and organs can be preserved intact by fixation with formalin for the future analysis of biomolecules of interest. With the advances in high-throughput methods, numerous protocols have been developed and optimized to attain the most pathophysiological information out of biomolecules, including RNA and proteins, in formalin-fixed samples. However, there is no systematic study to examine the effects of formalin fixation on the lipidome of biological samples in a global fashion. In this study, we conducted a mass spectrometry-based analysis to survey the alteration in the lipidome of mice brains by fixation methods. A total of 308 lipids were quantitatively measured using triple quadrupole mass spectrometry. We found that most were unchanged after formalin fixation except for a few lipid classes such as phosphatidylethanolamine.
Keywords
formalin fixation; N-formylation; mass spectrometry-based lipidomics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gustafsson, O. J.; Arentz, G.; Hoffmann, P. Biochim. Biophys. Acta. 2015, 1854, 559, DOI: 10.1016/j.bbapap.2014.10.003.   DOI
2 Kallioniemi, O. P.; Wagner, U.; Kononen, J.; Sauter, G. Hum. Mol. Genet. 2001, 10, 657, DOI: 10.1093/hmg/10.7.657.   DOI
3 Morton, M. L.; Bai, X.; Merry C. R.; Linden, A. L; Khalil, A. M.; Leidner, R. S.; Thompson, C. L. Lung cancer 2014, 85, 1, DOI: 10.1016/j.lungcan.2014.03.020.   DOI
4 Buesa, R. J. Ann. Diagn. Pathol. 2008, 12, 387, DOI: 10.1016/j.anndiagpath.2008.07.004.   DOI
5 Fahy, E.; Subramaniam, S.; Brown, H. A.; Glass, C. K.; Merrill, A. H., Jr.; Murphy, R. C.; Raetz, C. R.; Russell, D. W.; Seyama, Y.; Shaw, W.; Shimizu, T.; Spener, F.; van Meer, G.; VanNieuwenhze, M. S.; White, S. H.; Witztum, J. L.; Dennis, E. A. J. Lipid Res. 2005, 46, 839, DOI: 10.1194/jlr.E400004-JLR200.   DOI
6 Subramaniam, S.; Fahy, E.; Gupta, S.; Sud, M.; Byrnes, R. W.; Cotter, D.; Dinasarapu, A. R.; Maurya, M. R. Chem. Rev. 2011, 111, 6452, DOI: 10.1021/cr200295k.   DOI
7 Lee, J. W.; Nishiumi, S.; Yoshida, M.; Fukusaki, E.; Bamba, T. J. Chromatogr. A 2013, 1279, 98, DOI: 10.1016/j.chroma.2013.01.020.   DOI
8 Mok, H. J.; Shin, H.; Lee, J. W.; Lee, G.-K.; Suh, C. S.; Kim, K. P.; Lim, H. J. PLoS One 2016, 11, e0148577, DOI: 10.1371/journal.pone.0148577.   DOI
9 Wojakowska, A.; Marczak, L.; Jelonek, K.; Polanski, K.; Widlak, P.; Pietrowska, M. PLoS One 2015, 10, e0136902, DOI: 10.1371/journal.pone.0136902.   DOI
10 Kokkat, T. J.; Patel, M. S.; McGarvey, D.; LiVolsi, V. A.; Baloch, Z. W. Biopreserv Biobank 2013, 11, 101, DOI: 10.1089/bio.2012.0052.   DOI
11 Steiner, C.; Tille, J.-C.; Lamerz, J.; Geijtenbeek, S. K. V.; McKee, T. A.; Venturi, M.; Rubbia-Brandt, L.; Hochstrasser, D.; Cutler, P.; Lescuyer, P.; Ducret, A. Mol. Cell. Proteom. 2015, 14, 2786, DOI: 10.1074/mcp.O115.049049.   DOI
12 Moran, S.; Vizoso, M.; Martinez-Cardus, A.; Gomez, A.; Matias-Guiu, X.; Chiavenna, S. M.; Fernandez, A. G.; Esteller, M. Epigenetics 2014, 9, 829, DOI: 10.4161/epi.28790.   DOI
13 Werner, M.; Chott, A.; Fabiano, A.; Battifora, H. Am. J. Surg. Pathol. 2000, 24, 1016, DOI: 10.1097/00000478-200007000-00014.   DOI
14 Dennis, E. A.; Deems, R. A.; Harkewicz, R.; Quehenberger, O.; Brown, H. A.; Milne, S. B.; Myers, D. S.; Glass, C. K.; Hardiman, G.; Reichart, D.; Merrill, A. H., Jr.; Sullards, M. C.; Wang, E.; Murphy, R. C.; Raetz, C. R.; Garrett, T. A.; Guan, Z.; Ryan, A. C.; Russell, D. W.; McDonald, J. G.; Thompson, B. M.; Shaw, W. A.; Sud, M.; Zhao, Y.; Gupta, S.; Maurya, M. R.; Fahy, E.; Subramaniam, S. J. Biol. Chem. 2010, 285, 39976, DOI: 10.1074/jbc.M110.182915.   DOI
15 Dall'Armi, C.; Devereaux, K. A.; Di Paolo, G. Curr. Biol. 2013, 23, 33, DOI: 10.1016/j.cub.2012.10.041.   DOI
16 Obeid, L. M.; Linardic, C. M.; Karolak, L. A.; Hannun, Y. A. Science 1993, 259, 1769, DOI: 10.1126/science.8456305.   DOI
17 Wenk, M. R. Nat. Rev. Drug Discov. 2005, 4, 594, DOI: 10.1038/nrd1776.   DOI
18 Han, X.; Yang, K.; Gross, R. W. Mass Spectrom. Rev. 2012, 31, 134, DOI: 10.1002/mas.20342.   DOI
19 Shanta, S. R.; Zhou, L.-H.; Park, Y. S.; Kim, Y. H.; Kim, Y.; Kim, K. P. Anal. Chem. 2011, 83, 1252, DOI: 10.1021/ac1029659.   DOI
20 Hoffman, E. A.; Frey, B. L.; Smith, L. M.; Auble, D. T. J. Biol. Chem. 2015, 290, 26404, DOI: 10.1074/jbc.R115.651679.   DOI