DOI QR코드

DOI QR Code

Anti-inflammatory Activity of Standardized Fraction from Inula helenium L. via Suppression of NF-κB Pathway in RAW 264.7 Cells

  • Chun, Jaemoo (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Song, Kwangho (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Kim, Yeong Shik (Natural Products Research Institute, College of Pharmacy, Seoul National University)
  • Received : 2018.07.16
  • Accepted : 2018.09.07
  • Published : 2019.03.31

Abstract

Inula helenium L. is rich source of eudesmane-type sesquiterpene lactones, mainly alantolactone and isoalantolactone, which have the various pharmacological functions. In this study, we examined the inhibitory effects of nitric oxide (NO) production of hexane, methylene chloride, ethyl acetate, butanol, and water fractions from I. helenium and investigated the anti-inflammatory effect of hexane fraction of I. helenium (HFIH) in LPS-induced RAW 264.7 cells. Quantification of alantolactone and isoalantolactone from HFIH was carried out for the standardization by multiple reaction monitoring using triple quadrupole mass spectrometer. HFIH significantly inhibited inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) protein as well as their downstream products NO and prostaglandin $E_2$ ($PGE_2$) in LPS-stimulated RAW 264.7 cells. Moreover, HFIH suppressed $NF-{\kappa}B$ transcriptional activity by decreasing the translocation of p65 to the nucleus. The in vivo study further confirmed that HFIH attenuated the paw edema induced by carrageenan in an acute inflammation model. These findings suggest that HFIH may be useful as a promising phytomedicine for inflammatory-associated diseases.

Keywords

References

  1. Fujiwara, N.; Kobayashi, K. Curr. Drug Targets Inflamm. Allergy 2005, 4, 281-286. https://doi.org/10.2174/1568010054022024
  2. Amin, A. R.; Attur, M.; Abramson, S. B. Curr. Opin. Rheumatol. 1999, 11, 202-209. https://doi.org/10.1097/00002281-199905000-00009
  3. Tak, P. P.; Firestein, G. S. J. Clin. Invest. 2001, 107, 7-11. https://doi.org/10.1172/JCI11830
  4. Yamamoto, Y.; Gaynor, R. B. Trends Biochem. Sci. 2004, 29, 72-79. https://doi.org/10.1016/j.tibs.2003.12.003
  5. Yuan, G.; Wahlqvist, M. L.; He, G.; Yang, M.; Li, D. Asia Pac. J. Clin. Nutr. 2006, 15, 143-152.
  6. Spiridon, I.; Nechita, C. B.; Niculaua, M.; Silion, M.; Armatu, A.; Teaca, C. A.; Bodirlau, R. Cent. Eur. J. Chem. 2013, 11, 1699-1709. https://doi.org/10.2478/s11532-013-0295-3
  7. Trendafilova, A.; Chanev, C.; Todorova, M. Pharmacogn. Mag. 2010, 6, 234-237. https://doi.org/10.4103/0973-1296.66942
  8. Babaei, G.; Aliarab, A.; Abroon, S.; Rasmi, Y.; Aziz, S. G. Biomed. Pharmacother. 2018, 106, 239-246. https://doi.org/10.1016/j.biopha.2018.06.131
  9. Chun, J.; Choi, R. J.; Khan, S.; Lee, D. S.; Kim, Y. C.; Nam, Y. J.; Lee, D. U.; Kim, Y. S. Int. Immunopharmacol. 2012, 14, 375-383. https://doi.org/10.1016/j.intimp.2012.08.011
  10. He, G.; Zhang, X.; Chen, Y.; Chen, J.; Li, L.; Xie, Y. Biomed. Pharmacother. 2017, 90, 598-607. https://doi.org/10.1016/j.biopha.2017.03.095
  11. Ketai, W.; Huitao, L.; Yunkun, Z.; Xingguo, C.; Zhide, H.; Yucheng, S.; Xiao, M. Talanta 2000, 52, 1001-1005. https://doi.org/10.1016/S0039-9140(00)00467-7
  12. Gao, S.; Wang, Q.; Tian, X. H.; Li, H. L.; Shen, Y. H.; Xu, X. K.; Wu, G. Z.; Hu, Z. L.; Zhang, W. D. J. Ethnopharmacol. 2017, 196, 39-46. https://doi.org/10.1016/j.jep.2016.12.020
  13. Engstrom, M. T.; Palijarvi, M.; Salminen, J. P. J. Agric. Food Chem. 2015, 63, 4068-4079. https://doi.org/10.1021/acs.jafc.5b00595
  14. Ahn, K. S.; Noh, E. J.; Zhao, H. L.; Jung, S. H.; Kang, S. S.; Kim, Y. S. Life Sci. 2005, 76, 2315-2328. https://doi.org/10.1016/j.lfs.2004.10.042
  15. Kim, S. F.; Huri, D. A.; Snyder, S. H. Science 2005, 310, 1966-1970. https://doi.org/10.1126/science.1119407
  16. Tang, X.; Liu, D.; Shishodia, S.; Ozburn, N.; Behrens, C.; Lee, J. J.; Hong, W. K.; Aggarwal, B. B.; Wistuba, I. I. Cancer 2006, 107, 2637-2646. https://doi.org/10.1002/cncr.22315
  17. Morris, C. J. Methods Mol. Biol. 2003, 225, 115-121.
  18. Guo, C.; Zhang, S.; Teng, S.; Niu, K. J. Sep. Sci. 2014, 37, 950-956. https://doi.org/10.1002/jssc.201400119
  19. Calixto, J. B. Braz. J. Med. Biol. Res. 2000, 33, 179-189. https://doi.org/10.1590/S0100-879X2000000200004

Cited by

  1. (3β,16α)-3,16-Dihydroxypregn-5-en-20-one from the Twigs of Euonymus alatus (Thunb.) Sieb. Exerts Anti-Inflammatory Effects in LPS-Stimulated RAW-264.7 Macrophages vol.24, pp.21, 2019, https://doi.org/10.3390/molecules24213848
  2. Megastigmane Derivatives from the Cladodes of Opuntia humifusa and Their Nitric Oxide Inhibitory Activities in Macrophages vol.83, pp.3, 2020, https://doi.org/10.1021/acs.jnatprod.9b01120
  3. Antioxidant and anti‐inflammatory effects of Lilium lancifolium bulbs extract vol.44, pp.5, 2019, https://doi.org/10.1111/jfbc.13176
  4. In Vitro Studies to Assess the α-Glucosidase Inhibitory Activity and Insulin Secretion Effect of Isorhamnetin 3-O-Glucoside and Quercetin 3-O-Glucoside Isolated from Salicornia herbacea vol.9, pp.3, 2019, https://doi.org/10.3390/pr9030483
  5. Anti-inflammatory Eudesmane Sesquiterpenoids from Artemisia hedinii vol.84, pp.5, 2021, https://doi.org/10.1021/acs.jnatprod.1c00177