Browse > Article
http://dx.doi.org/10.20307/nps.2019.25.1.16

Anti-inflammatory Activity of Standardized Fraction from Inula helenium L. via Suppression of NF-κB Pathway in RAW 264.7 Cells  

Chun, Jaemoo (Natural Products Research Institute, College of Pharmacy, Seoul National University)
Song, Kwangho (Natural Products Research Institute, College of Pharmacy, Seoul National University)
Kim, Yeong Shik (Natural Products Research Institute, College of Pharmacy, Seoul National University)
Publication Information
Natural Product Sciences / v.25, no.1, 2019 , pp. 16-22 More about this Journal
Abstract
Inula helenium L. is rich source of eudesmane-type sesquiterpene lactones, mainly alantolactone and isoalantolactone, which have the various pharmacological functions. In this study, we examined the inhibitory effects of nitric oxide (NO) production of hexane, methylene chloride, ethyl acetate, butanol, and water fractions from I. helenium and investigated the anti-inflammatory effect of hexane fraction of I. helenium (HFIH) in LPS-induced RAW 264.7 cells. Quantification of alantolactone and isoalantolactone from HFIH was carried out for the standardization by multiple reaction monitoring using triple quadrupole mass spectrometer. HFIH significantly inhibited inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) protein as well as their downstream products NO and prostaglandin $E_2$ ($PGE_2$) in LPS-stimulated RAW 264.7 cells. Moreover, HFIH suppressed $NF-{\kappa}B$ transcriptional activity by decreasing the translocation of p65 to the nucleus. The in vivo study further confirmed that HFIH attenuated the paw edema induced by carrageenan in an acute inflammation model. These findings suggest that HFIH may be useful as a promising phytomedicine for inflammatory-associated diseases.
Keywords
Inula helenium L.; Sesquiterpene lactones; Anti-inflammation; $NF-{\kappa}B$; RAW 264.7 cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fujiwara, N.; Kobayashi, K. Curr. Drug Targets Inflamm. Allergy 2005, 4, 281-286.   DOI
2 Amin, A. R.; Attur, M.; Abramson, S. B. Curr. Opin. Rheumatol. 1999, 11, 202-209.   DOI
3 Tak, P. P.; Firestein, G. S. J. Clin. Invest. 2001, 107, 7-11.   DOI
4 Yamamoto, Y.; Gaynor, R. B. Trends Biochem. Sci. 2004, 29, 72-79.   DOI
5 Yuan, G.; Wahlqvist, M. L.; He, G.; Yang, M.; Li, D. Asia Pac. J. Clin. Nutr. 2006, 15, 143-152.
6 Spiridon, I.; Nechita, C. B.; Niculaua, M.; Silion, M.; Armatu, A.; Teaca, C. A.; Bodirlau, R. Cent. Eur. J. Chem. 2013, 11, 1699-1709.   DOI
7 Trendafilova, A.; Chanev, C.; Todorova, M. Pharmacogn. Mag. 2010, 6, 234-237.   DOI
8 Babaei, G.; Aliarab, A.; Abroon, S.; Rasmi, Y.; Aziz, S. G. Biomed. Pharmacother. 2018, 106, 239-246.   DOI
9 Chun, J.; Choi, R. J.; Khan, S.; Lee, D. S.; Kim, Y. C.; Nam, Y. J.; Lee, D. U.; Kim, Y. S. Int. Immunopharmacol. 2012, 14, 375-383.   DOI
10 He, G.; Zhang, X.; Chen, Y.; Chen, J.; Li, L.; Xie, Y. Biomed. Pharmacother. 2017, 90, 598-607.   DOI
11 Ketai, W.; Huitao, L.; Yunkun, Z.; Xingguo, C.; Zhide, H.; Yucheng, S.; Xiao, M. Talanta 2000, 52, 1001-1005.   DOI
12 Gao, S.; Wang, Q.; Tian, X. H.; Li, H. L.; Shen, Y. H.; Xu, X. K.; Wu, G. Z.; Hu, Z. L.; Zhang, W. D. J. Ethnopharmacol. 2017, 196, 39-46.   DOI
13 Engstrom, M. T.; Palijarvi, M.; Salminen, J. P. J. Agric. Food Chem. 2015, 63, 4068-4079.   DOI
14 Ahn, K. S.; Noh, E. J.; Zhao, H. L.; Jung, S. H.; Kang, S. S.; Kim, Y. S. Life Sci. 2005, 76, 2315-2328.   DOI
15 Kim, S. F.; Huri, D. A.; Snyder, S. H. Science 2005, 310, 1966-1970.   DOI
16 Tang, X.; Liu, D.; Shishodia, S.; Ozburn, N.; Behrens, C.; Lee, J. J.; Hong, W. K.; Aggarwal, B. B.; Wistuba, I. I. Cancer 2006, 107, 2637-2646.   DOI
17 Morris, C. J. Methods Mol. Biol. 2003, 225, 115-121.
18 Guo, C.; Zhang, S.; Teng, S.; Niu, K. J. Sep. Sci. 2014, 37, 950-956.   DOI
19 Calixto, J. B. Braz. J. Med. Biol. Res. 2000, 33, 179-189.   DOI