• Title/Summary/Keyword: triple moments

Search Result 8, Processing Time 0.024 seconds

Higher Order Moments of Record Values From the Inverse Weibull Lifetime Model and Edgeworth Approximate Inference

  • Sultan, K.S.
    • International Journal of Reliability and Applications
    • /
    • v.8 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • In this paper, we derive exact explicit expressions for the triple and quadruple moments of the lower record values from inverse the Weibull (IW) distribution. Next, we present and calculate the coefficients of the best linear unbiased estimates of the location and scale parameters of IW distribution (BLUEs) for different choices of the shape parameter and records size. We then use the higher order moments and the calculated BLUEs to compute the mean, variance, and the coefficients of skewness and kurtosis of certain linear functions of lower record values. By using the coefficients of the skewness and kurtosis, we develop approximate confidence intervals for the location and scale parameters of the IW distribution using Edgeworth approximate values and then compare them with the corresponding intervals constructed through Monte Carlo simulations. Finally, we apply the findings of the paper to some simulated data.

  • PDF

Comparison of the dynamic responses of $G\ddot{u}lburnu$ Highway Bridge using single and triple concave friction pendulums

  • Yurdakul, Muhammet;Ates, Sevket;Altunisik, Ahmet Can
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.511-525
    • /
    • 2014
  • The main object of this study is to determine and compare the structural behavior of base isolated long span highway bridge, $G\ddot{u}lburnu$ Highway Bridge, using single concave friction pendulum (SCFP) and triple concave friction pendulum (TCFP). The bridge is seismically isolated in the design phase to increase the main period and reduce the horizontal forces with moments using SCFP bearings. In the content of the paper, firstly three dimensional finite element model (FEM) of the bridge is constituted using project drawings by SAP2000 software. The dynamic characteristics such as natural frequencies and periods, and the structural response such as displacements, axial forces, shear forces and torsional moments are attained from the modal and dynamic analyses. After, FEM of the bridge is updated using TCFP and the analyses are performed. At the end of the study, the dynamic characteristics and internal forces are compared with each other to extract the TCFP effect. To emphasize the base isolation effect, the non-isolated structural analysis results are added to graphics. The predominant frequencies of bridge non-isolated, isolated with SCFP and isolated with TCFP conditions decreased from 0.849Hz to 0.497Hz and 0.338Hz, respectively. The maximum vertical displacements are obtained as 57cm, 54cm and 44cm for non-isolated, isolated with SCFP and isolated with TCFP conditions, respectively. The maximum vertical displacement reduction between isolated with TCFP bearing and isolated with SCFP bearing bridge is %23. Maximum axial forces are obtained as 60619kN, 18728kN and 7382kN, maximum shear forces are obtained as 23408kN, 17913kN and 16249kN and maximum torsional moments are obtained as 24020kNm, 7619kNm and 3840kNm for non-isolated, isolated with SCFP and isolated with TCFP conditions, respectively.

Reynolds Stress Transport in a Merged Jet Arising from Two Opposing urved Wall Jets (두 곡면벽제트로부터 형성된 합성제트에서의 레이놀즈응력 전달)

  • 류호선;박승오
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.416-425
    • /
    • 1993
  • To investigate the characteristics of the merged jet arising from the interaction of two opposing curved wall jets over a circular cylinder in still air, mean velocity, Reynolds stresses, triple moments and integral length scale were measured using hot-wire anenometry. The turbulent kinetic energy and shear stress budget were evaluated using the measured data. The variations of the Reynolds stresses, the triple moment and integral length scale are severe in the interaction region. The pressure diffusion terms are found to be very large when compared the other terms in the interaction region. The distributions of the Reynolds stress and the triple moment in the similar region are found to be similar to those of conventional plane jets.

Bulk-Type Cloud Microphysics Parameterization in Atmospheric Models (대기 모형에서의 벌크형 미세구름물리 모수화 방안)

  • Lim, Kyo-Sun Sunny
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.227-239
    • /
    • 2019
  • This paper reviews various bulk-type cloud microphysics parameterizations (BCMPs). BCMP, predicting the moments of size distribution of hydrometeors, parameterizes the grid-resolved cloud and precipitation processes in atmospheric models. The generalized gamma distribution is mainly applied to represent the hydrometeors size distribution in BCMPs. BCMP can be divided in three different methods such as single-moment, double-moment, and triple-moment approaches depending on the number of prognostic variables. Single-moment approach only predicts the hydrometeors mixing ratio. Double-moment approach predicts not only the hydrometeors mixing ratio but also the hydrometeors number concentration. Triple-moment approach predicts the dispersion parameter of hydrometeors size distribution through the prognostic reflectivity, together with the number concentrations and mixing ratios of hydrometeors. Triple-moment approach is the most time expensive method because it has the most number of prognostic variables. However, this approach can allow more flexibility in representing hydrometeors size distribution relative to single-moment and double-moment approaches. At the early stage of the development of BMCPs, warm rain processes were only included. Ice-phase categories such as cloud ice, snow, graupel, and hail were included in BCMPs with prescribed properties for densities and sedimentation velocities of ice-phase hydrometeors since 1980s. Recently, to avoid fixed properties for ice-phase hydrometeors and ad-hoc category conversion, the new approach was proposed in which rimed ice and deposition ice mixing ratios are predicted with total ice number concentration and volume.

Three Stage Estimation for the Mean of a One-Parameter Exponential Family

  • M. AlMahmeed;A. Al-Hessainan;Son, M.S.;H. I. Hamdy
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.2
    • /
    • pp.539-557
    • /
    • 1998
  • This article is concerned with the problem of estimating the mean of a one-parameter exponential family through sequential sampling in three stages under quadratic error loss. This more general framework differs from those considered by Hall (1981) and others. The differences are : (i) the estimator and the final stage sample size are dependent; and (ii) second order approximation of a continuously differentiable function of the final stage sample size permits evaluation of the asymptotic regret through higher order moments. In particular, the asymptotic regret can be expressed as a function of both the skewness $\rho$ and the kurtosis $\beta$ of the underlying distribution. The conditions on $\rho$ and $\beta$ for which negative regret is expected are discussed. Further results concerning the stopping variable N are also presented. We also supplement our theoretical findings wish simulation results to provide a feel for the triple sampling procedure presented in this study.

  • PDF

Yield mechanisms of stepped cantilevers subjected to a dynamically applied constant tip force

  • Wang, B.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.445-462
    • /
    • 1995
  • Previous studies of a stepped cantilever with two straight segments under a suddenly applied constant force (a step load) applied at its tip have shown that the validity of deformation mechanisms is governed by certain geometrical restrictions. Single and double-hinge mechanisms have been proposed and it is shown in this paper that for a stepped cantilever with a stronger tip segment, i.e. $M_{0.1}$ > $M_{0.2}$, where $M_{0.1}$ and $M_{0.2}$ are the dynamic fully plastic bending moments of the tip and root segments, respectively, the family of possible yield mechanisms is expanded by introducing new double and triple-hinge mechanisms. With the aid of these mechanisms, it is shown that all initial deformations can be derived for a stepped cantilever regardless of its geometry and the magnitude of the dynamic force applied.

Direct numerical simulation of the turbulent boundary layer with rod-roughened wall (표면조도가 있는 난류경계층에서의 직접수치모사)

  • Lee, Seung-Hyun;Sung, Hyung-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.445-448
    • /
    • 2006
  • The effects of surface roughness on a spatially-developing turbulent boundary layer (TBL) were investigated by performing direct numerical simulations of TBLs over rough and smooth walls. The Reynolds number based on the momentum thickness was varied in the range $Re_{\theta}=300{\sim}1400$. The roughness elements used were periodically arranged two-dimensional spanwise rods, and the roughness height was $k=1.5{\theta}_{in}$, which corresponds to $k/{\delta}=0.045{\sim}0.125$. To avoid generating a rough wall inflow, which is prohibitively difficult, a step change from smooth to rough was placed $80{\theta}_{in}$ downstream from the inlet. The spatially-developing characteristics of the rough-wall TBL were examined. Along the streamwise direction, the friction velocity approached a constant value and a self-preserving form of the turbulent stress was obtained. Introduction of the roughness elements affected the turbulent stress not only in the roughness sublayer but also in the outer layer. Despite the roughness-induced increase of the turbulent stress in the outer layer, the roughness had only a relatively small effect on the anisotropic Reynolds stress tensor in the outer layer. Inspection of the triple products of the velocity fluctuations revealed that introducing the roughness elements onto the smooth wall had a marked effect on vertical turbulent transport across the whole TBL. By contrast, good surface similarity in the outer layer was obtained for the third-order moments of the velocity fluctuations.

  • PDF

Study on centerline turbulent structures of circular contraction and expansion ducts (수축부와 확대부의 중심 유동에서 나타나는 대칭적 난류구조에 관한 연구)

  • Han,Yong-Un;Lee, Jang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.221-228
    • /
    • 1998
  • In order to look into the comparative flow characteristics between a circular contraction duct and a circular expansion duct the both centerline turbulent structures have been investigated by the hot wire anemometry. Both of the contraction and the expansion have Morel type contours. Means, turbulences, and triple moments have been measured for the turbulent kinetic energy budgets along their centerlines. It is resulted that mean velocities of both have much deviated from theoretical values calculated by one-dimensional continuity considerations, and that for the same upstream condition, the expansion maintains the isotropy in general while the contraction maintains a severe anisotropy through the whole duct. The mean transport of the TKE along the expansion is willing to balance mostly with the dissipation in the TKE budgets while that along the contraction is balanced with the production in the turbulent kinetic energy equation.