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Three Stage Estimation for the Mean of
a One—Parameter Exponential Family

M. AlMahmeed?, A. Al-Hessainan?, M. S. Son® and H. I. Hamdy%

Abstract

This article is concerned with the problem of estimating the mean of a
one-parameter exponential family through sequential sampling in three stages under
quadratic error loss. This more general framework differs from those considered by
Hall (1981) and others. The differences are : (i) the estimator and the final stage
sample size are dependent; and (ii) second order approximation of a continuously
differentiable function of the final stage sample size permits evaluation of the
asymptotic regret through higher order moments. In particular, the asymptotic regret
can be expressed as a function of both the skewness p and the kurtosis B of the
underlying distribution. The conditions on o and A for which negative regret is
expected are discussed. Further results concerning the stopping variable N are also
presented. We also supplement our theoretical findings with simulation results to
provide a feel for the triple sampling procedure presented in this study.

1. Introduction

Let X;,X5,...be a sequence of independent and identically distributed random variables

from the one parameter natural exponential family

dFa(x)=fRe“"“”(“’dP(x), X€R, acQ (1.1)

with respect to a o-finite measure P. The natural parameter space £2 is an open interval on

the real line R over which
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fReade(x) (oo | geQ.

The function ¥(-) is convex on £ (eg. see Lehmann (1986, pg. 57)), satisfying the

moment relation E(e%) = e T+t9-¥a),
Hence
EX)=0(a)=0, VarlX)=¥"(a),
EX—-0°%=""(a), EX-0'=0""(a)+37 Xa),
with

p=¥"(a)/ T'¥(a) and B= V" (a)/ ¥ ¥ a)+3,

where primes mean derivatives and p and B denote the coefficients of skewness and
kurtosis of the distribution F', respectively.

Let X,,X5,...,X, (n=2) be a random sample from the distribution F,. It is not hard
to prove that
E(X,)=06, Vel X,)=n"'T"(a),
E(X,—60’=n"?T"(a), E(X,—O)'=n"{T""(0)+3(n—1) ¥ *a)}.
Naturally, we propose to use the maximum likelihood estimator (MLE) X, to estimate the

unknown parameter € subject to the following quadratic loss function with linear sampling
cost,

L(A)=AY X,— 6% +n, 1.2)

where A>0 is a known constant. It follows from (1.2) that the risk of estimating 6 by X,

is given by

E(L(A))=A*T " (a)n ' +n (1.3)

Minimizing the risk in (1.3) results in the optimal sample size, #* = AV ¥ ’(a@). The variance
function ¥ () depends on 8= ¥ (a) and so does every function of @, see Morris (1982)
for details.

Therefore, we write %" as

n'= Ag(6) (1.4)

Further, it is possible to relate g(8) and g ’(6) to p and B of the underlying distribution
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F,.
Recall = ¥ (@), then
r( )( )—1

and

'/ ( )2+€P‘( )( ) =0.
Thus,

gO=1/2¥ () o d0 (15)

=(1/2) o,
and
g()=1/2(B—(3/2)*—3) IV T (a). (1.6)

It is obvious from (1.6) that if g'(8)=0 then A=(3/2)0%+3.
Had 6 been known, then the optimal risk would be

E(L (A)=2n".
In applications, however #" is unknown because @ is unknown. Therefore, in (1.4) we mimic
g(0) by g( X,) to develop the following three stage sampling procedure to estimate 6 via

estimate of #”.

2. Sequential Sampling in Three Stage

The idea of sequential sampling in three stages was first introduced by Hall (1981) to
construct a fixed width confidence interval for a normal mean. Unlike one-by-one, purely
sequential sampling, three-stage sampling involves sampling in consecutive groups. This
sampling technique was designed to combine the operational savings made possible by
sampling in batches with the efficiency of purely sequential procedures.

The three-stage procedure begins with an initial random sample of size m(=2) from the

distribution F, to compute the estimate g{ X,) of g(6). Then, a fraction y =(0,1) is

selected to determine the percentage of #" to be estimate in the second stage. Accordingly,
the second stage sample size is determined by the stopping rule

Ny =max{m, [r Ag( X,)]+1}, 2.1



542 M. AlMahmeed, A. Al-Hessainan, M. S. Son and H. I. Hamdy

where [ -] denotes the largest integer function. If the decision is to continue sampling, the
initial sample is augmented with a second randomly selected batch of size N;,—m to

determine the final sample size from the stopping rule
N=max{N,, [Ag( X)I1+1}, (2.2)

If necessary, a third batch of size N—N; is randomly selected and combined with the
previous N) observations to compute the sample mean ?(N as an estimate for the unknown

parameter §.

Decision rules similar to (2.1)-(2.2) were considered by Woodroofe (1987) in studying the
asymptotic local minimax regret of the three-stage point estimation procedure. The three
sampling stages were aptly termed the pilot study, the main study, and the fine-tuning.

In this study we provide rigorous derivations of the asymptotic second order characteristics
of the three-stage scheme (2.1)-(2.2). In particular, we thoroughly develop large sample
properties of a continuously differentiable function of N instead of focusing solely on rational
powers of N. Moreover, we obtain a sharp estimate for the asymptotic regret associated with
the above sampling technique within the quadratic error loss function (1.2) framework. The
phenomenon of negative regret outlined by Martinsek (1998) is highlighted in this context as
well. The asymptotic normality of the stopping variable N is also explored through the
moment generating function of N. Applications to some standard distributions are illustrated
for comparison with some previous known results. The present problem also differs from
those considered by many authors including Hall (1981), Mukhopadhyay et al. (1987), Hamdy
(1988), Hamdy et al. (1989), Hamdy and Son (1981), Hamdy (1995) and Hamdy et al. (1995) in
that the sample mean and the final stage sample size are highly correlated and therefore our
approach took a different turn.

Throughout the following section the asymptotic characteristics of the three stage sampling
scheme are developed under Hall’'s (1981) assumptions that A= O(m"), »>1 and lim sup

(m/n")(y as m—oo, A—>oo. This setup implies that as m—o0, A—co at a faster rate.
Lemma 1 gives preliminary results concerning the above triple sampling procedure.

Lemma 1. For the three stage rule (2.1)-(2.2), if g and its derivatives are bounded, then as
W0

AR Xy — ) =—(1/D o7y ' +0(1) ;
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(i) AE( X 5 — 0=V T '(a) y '+0o(1) ;
(i) AE(g( X ) — &(60)) = (1/4)X(8— (5/2)0*=3) 7~  + o(1).

Proof of Lemma 1. Conditioning on the o-field generated by X,,...,X,,, we have
E( X y)=EE( X y|X1, Xp, ... X = E Nl“(gx,-+ (N, — m))),

and
EXy—8=mE{N"( X,~0)

We then expand N; ! around g£(6) and obtain
N7'= () T = (el X)) —2(0) g7 (rn”) T (rA) e X) — 2(6)F 73,

where r is a random variable lying between g( X,,) and g(6). It follows that

E(Xy—0) = —mg  (O)(yn") 'E{( X,— 0)(g( X,)— (60}
+ m(yA) T E{( X,.— 0)(g( X,)—g(8)? %)
= I + II.

Say.
Now in I, we expand g{ X,,) around @ to obtain

I=—mg ' (8) (yn") ' E{( X,,— ){&()+( Xn— 0 (O)+(1/2)( X,.— )’ (0) — &(6)}},
where » 1s a random variable lying between 7(,,, and €. Hence,
I=mg™'(8) (yn") ™' g(HE( X,n— 0)*—(1/2)mg™ (O)(yn") 'E{( X,.— 0’2" (»)}

Next we evaluate £ ( Xm—ﬁ)z'g"(u)}. Since g '<K, is bounded, where K, is a generic

constant independent of X,,, v, m,and A, it follows that

(1/2) mg M O(yn") 'E{( X— 0% (0)} < (1/2)Kimg™(6) (yn") 'E( X, — 6)°
=(1/2)Kymg™'(0) (yn") "' & (a) [ m?
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<(1/2)Kymg %) (yA) " '¥" (a)

=0(A ) as m — o

Hence, we obtain
I=—(1/2)(7A) o+ 0(A™Y) , by 15).

Next, we proceed to evaluate II. The function g <V K, is bounded by some generic
constant V K, independent of X,, 7, m and A. Therefore,

| (e X.)—e(0)?] < Ky( X,,— 6)*
Thus,

I < Kym(yA)'E{( X,,— 6373}

Recall that ¢ lies between g(6) and g{ X,), so we discuss the following two cases. First,
if g0 << g( X,),then 7! < g~1(4). Subsequently, we have

Kom(yA) T'E{( X,,— 0)°* %} < Kym(yA) 'g (O E( X,.— 6)°
= Kym(yA) g (O T (a) I m®
< Kym(yA) g 3(0) ¥ (a)

= oA™Y as m — o
Second, if g( X,,) < r < g(6), we have (AD)™!' < (N,—1)7' < (m—1)"", which gives

Kom(yA) T'E{( X,,— 0)°7Y) < Ky(n AT (@)/(m—1)*
= o(A7Y) as m — oo,
where we have used the assumption that A=o(m™ ") for »>1. Thus, II=0(A"}!) as
m —> 0O,

Collecting terms, we have

AE(Xy—6 = I+1I = —(1/2y o+ 6(1) as m — oo,
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This proves (i) of Lemma 1. Part (ii) can be justified in a similar manner and therefore we
omit further details.

To prove (iii), we expand g( —XN,) in a Taylor series around # and take the expectation

throughout to obtain
Eg( Xn)=g(0)+E( X y—0)g (O+(1/2)E( X n,— 028" (6)+ E(R ). (2.3)

Similar arguments to those used above and Lemma (4.1) of Woodroofe (1987) vyield
E(R1N1)=0(A’l). Now, substitute equations (1.5), (1.6), and (i) and (ii) of Lemma 1 into

(2.3) to obtain (iii) of Lemma 1, which completes the proof.

It remains to elaborate on our findings in Lemma 1. It is clear from (i) of Lemma 1 that
X'Nl is biased for 8. The amount for bias depends on the skewness p of the underlying
distribution F, as well as the design factor ¥, which represents the fraction #* of we wish

to estimate in the second stage, and the known constant A which reflects the decision
maker’s attitude towards estimation risk. Martinsek (1988) obtained a result similar to (i) of
Lemma 1 for the non-parametric case for purely sequential sampling. It is of interest to study
whether the third stage information about € will indeed reduce the bias noticed in (i) of
Lemma 1. It also follows from (iii) of Lemma 1 that

AVarg( X 3)=(1/4) %y W T (a)+ o(1). (2.4)

As we proceed to develop theory for triple sampling, we focus upon studying the
asymptotic features of this group sampling technique following Chow and Robbins (1965).

Some preliminary results concerning the stopping variable N are given in Lemma 2.

Lemma 2. Under the conditions in Lemma 1, we have as m — o
O E(N)=n"+(1/2)(1+(1/2)(B— (5/2)0°=3) 7™ +0o(1);
(W) A7'Var N =1/aV T (@p®r '+ o(1);
i) ATE(N—#"%)=0o(1).

Proof of Lemma 2. To prove (i), note that N=[Ag( X y)]+1 except perhaps on a set
£={(V, > ([Ag( X1+ HU(m > [74 g X,)]1+ D)
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such that fe N dP = o(l); see for example Hall (1981) for details. Hence,

E(N)=A E(g( X 5)+E(#)+o(1) (2.5)

where ¢=1—A(g( Xy)—[A g( X ~)]) If the underlying distribution is smooth as in the

case of the normal distribution, Hall (1981, pg.1237) proved that ¢ is asymptotically uniform
over (0,1) and therefore E(¢)=1/2. Generally however, the random variable ¢ is continuous
over (0,1) independent of A. This can be shown easily from the rule (2.2) and the inequality

Ag( X y) CTA g Xp)I+1 < Ag( Xy)+1

However, if m is large enough, a simple application of Anscombe’s (1952) central limit
theorem shows that g( —XN,) ~ N (g(6),0), where 8=(1/4) 0*¥ (@) (yn*) ). Nevertheless,

from a practical standpoint, it seems reasonable to set E(¢)=1/2. We then substitute (iii) of
Lemma 1 in (2.5); thus (i) of Lemma 2 is straightforward.

To prove (ii) we write the variance of N as
Var(N) = A% Var(g( X n))+2Cou(¢,g( X))+ 0o(A) as m — o0 (2.6)
Next, the Cauchy-Schwarz inequality yields

Cov’(p,g( X n)) < Var(¢)Var(e( X n)) 2.7)

=o(A7Y) as m— oo,

by (2.4) Thus, substitute (2.4) and (2.7) in (2.6) and then (ii) of Lemma 1 is immediate.
To prove (iii) of Lemma 2 we write

A7 IN= P = Al g X w)— 2(0)|°
<AK3| X y—6|’,

where Kj; is another generic constant. Part (ili) of Lemma 1 can be used to prove that

E(' YM_ HIB)= o(A™Y) and therefore, A% E(|IN— n*|3) = o(1). This completes the proof
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of Lemma 2.

The following Theorem 1 provides a second order asymptotic expansion for the expectation
of a continuously differentiable function % of N.

Theorem 1. Let h be a continuously differentiable function in a neighborhood of %", such

that j:f: |77 (") =0 (1K (#n")]). then, as m — oo,

E(R(ND) = h(n*) + (1/2X Cr+ (1/2)(B— (5/2)0*—3)) K (n*) + (1/4)n" 0* k" (n*)}y ™!
+o(A% K (A)).

Proof of Theorem 1. A Taylor expansion of A(N) gives
E(h(N) =W n")+ E(IN— n )l (n*) + (1/2) EIN— #")2R (") + E(Ryw), (2.8)

where |RM = (1/6) | (N— #n*)%h"""(5)|. The random variable 7 lies between N and #".
Therefore,

ElR < (1/6) S 11" (m)| E(N—n"")

= o(A%K"(A))
as m — o by (iii) of Lemma 2 and the assumption that %""" is bounded. Equation (2.8) and
(ii) of Lemma 2 complete the proof of Theorem 1.

Lemma 3. Under the conditions in Lemma 1, we have as m — o,
() EC X =0—(1/2)pA  +o(A™Y);
(i) A2E( Xy— )%= n"+(1/D{(1/2)(T+ 1690 — (1 + 408+ 3+ 100} + o(D).

Proof of Lemma 3. Conditioning on the o-field generated by X,,..., Xy, we write

E( Xy— O=E{NN'( Xy~ 0)}.

We then expand N ! around @ with a remainder Ry,
N '=pn"1—( _XM‘ g (g~ (O n* "+ Ryy.

Consequently, we have
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E( Xy—0)=—E{N( X 5~ 0’} (Dg ' (O)n"" '+ E(Ry).
Lemma (3.4) of Woodroofe (1987) gives E(N;( X y,— 6)®) = ¥ ’(a). Thus,

B(Xy—6) = —(1/2)0A™" + E(Raw).

It remains to estimate E(Rsy). Now,
(R3y) < Ky AZ{Nl( Xy~ 0 (g _XN,)—g(e))zf_a},

for some generic constant K, independent of N and m, where ¢ is a random variable lying

between N and n*. If n* < & < N we have
E(Rypy) < K, A7 E{ N ( T(M—H)S}———O(A(”D) as A — oo

where E{ N2( 7(Nl—6’)3}= ¥'’(a) as A — o by Lemma (3.4) of Woodroofe (1987). On

the other hand, if N < ¢ < #»*, we obtain

E(R3N) < K4 142 E{ le( —XNl_H)S }/m3
= o(A7!) as A — o,

where we have used Lemma (3.4) of Woodroofe (1987) and the condition #* = o(m") for »>1.
We now turn to prove (ii) of Lemma 3. Consider the expression

A’E( Xy—0)° = AE{E( X y—0)%X,,.... Xy}
= A? E( NN Y Xy — 0+ nE(N"Y)— n"E(N;N?)
=1+ - II.

Also, consider the following expansion of N 2 around with @ a remainder Ry

N 2=pn""2=2( X y— DA (0)g ()
~(Xn—02AHg N0 g (0)—32 (g (O} + Ryw.
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For the first term we get,
I=yn" =227 0) g (OE{ N\*( X y,— 6)°)
— (&0 (0)—327 0% E{ N ( X n— 60"} +E(Rsw)

Moreover, Lemma (3.4) of Woodroofe (1987) also provides
E[ N*( Xy— 0% = 3¥'%a), as m — oo

Hence,

I = yn*+(1/2){(7/2)0*— 38+ 9} + o(1).

Lemma (4.1) of Woodroofe (1987) is used to show that E(Rsy) =o0(1) as A — oo,

For the second term we use Theorem 1 with A(H=¢"1, ¢ >0, to get

II=n*—(1/2) {7+ (1/2) B— (1/8) 0 — (3/2}r~ " + 0(1).

The third term is obtained through arguments similar to those used to derive I above, as
well as another application of Woodroofe’s (1987) Lemma (3.4) to prove that

E{(N( X y—0%=7"(a).
Finally we arrive at

IIT= yn*(1/2) {30% — B+ 3} + o(1),
which proves (ii) of Lemma 3, and the proof is complete.

Interestingly, (i) of Lemma 3 is the same expression obtained by Martinsek (1988) for
estimating the mean of a nonparametric non-lattice distribution by purely sequential sampling
under a quadratic loss function similar to (1.2). It is obvious from (i) of Lemma 3 that the
information gained by the third stage reduces the bias noticed in (i) of Lemma 1 by

proportion 7. We expect ij to be biased downward if F, has positive skewness and
upward if F, has negative skewness.

The main result of this study is given in the following Theorem 2 to obtain the asymptotic
regret of the triple sampling procedure (2.1)~(2.2). As in Chow and Robbins (1965), we define
the asymptotic regret of the triple sampling procedure (2.1)-(2.2) as
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w=FE(LA))—E(L (A)) as m — .

Theorem 2. Under the quadratic loss function in (1.2), the regret of the procedure (2.1)-(2.2)
is given by

w=(1/4)(8y+ 1) o>y 1= B+3+0(1), as m — .

(The special case of 7 — 1 in the above regret gives the corresponding pure sequential

regret w=2.250°—B+3+0(l), as m — .)

It is obvious that the above asymptotic regret is a non-vanishing quantity independent of m
and A. The amount of regret encountered in using a triple sampling procedure instead of the
fixed sample counterpart depends on two main sources of information. The first source is due

to the nature of the underlying distribution F, through the coefficients p and A. The
second source of information is related to the role played by the second stage (the main

study) through factor 7.

Proof of Theorem 2. Consider the quadratic error loss function in (1.2) to obtain
w=A%E( Xy— 0)*+ E(N)—2n",
and then apply (ii) of Lemma 3 and (i) of Lemma 2 to arrive at the statement of Theorem 2.

Martinsek (1988) discussed the possibility of sequential procedures resulting in negative
regret. Here, we also argue the possibility that three stage schemes may surpass the fixed
sample size procedures. Following the result in Theorem 2, one would expect negative regret

when B> (1/4)(8y+1)p?y ' +3. Hall (1981) and others recommended the use of y=1/2
for practical applications. In that sense three stage sampling procedures result in negative

regret if B > 2.50°+3. The previous conclusion is similar to that given in Martinsek (1983)
for the nonparametric distributions using a completely different approach. On the other hand,
had the purely sequential procedure been used we would expect negative regret if

B> 2.50°+3.
2.1 The Asymptotic Normality of the Stopping Rule

Finally, we explore the asymptotic distribution of the stopping rule (2.2). Specifically, we
investigate the large sample performance of the expression (N—#")/V N'. This can be as a
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direct application of Theorem 2. Let h(N)= ¢~ w to obtain the limiting moment

generating function, E(e'(N"".)N?)=1+(1/4)027_1(t2/2)+o(A_l/z) as m — oo, which is
the moment generating function of the normal distribution with mean 0 and variance

(/4 e*r .
3. Applications

In this section we examine some samples in which the estimation process is subjected to
the loss function in (1.2). For each case we apply the main results to study the regret
associated with the triple sampling procedure. Other important results are also presented for
completeness.

3.1 The normal case

Let X,,X,, ... be a sequence of independent and identically normally distributed random

variables with known mean g and unknown variance 6. Without loss of generality we can

assume the normal mean g=0. The main interest is estimation of the normal variance @,
under the loss function in (1.2). The above distribution is a member of the exponential family.
Hence, we write

dF (x)=(27) Y2 —x2/20—(1/2)m(9)dx , for —o0o < x { o0 and 6 >0.

2p

In view of equation (1.1) with ” x” replaced by " x°” we have,

Wa)=(1/Da=—120)""

which results in po=V8 and B=15. Also, minimization of the loss function in (1.2) provides
an optimal sample size »" =~ V2A6. If the triple sampling procedure (2.1)-(2.2) is used we

propose the sample variance s? y to estimate & . Now, (i) of Lemma 3 gives

E(S* ) =0-V2A ' +0o(A7Y),

which shows that SZN is underestimating the unknown variance §@. The amount of bias

decreases as A increase. Also, (i) of Lemma 2 yields
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ENy=n"+(1/2)—2y""+ o(1) and Var(N)=(1/4)y"'n"+ o(A).

Theorem 2 measures the asymptotic regret of the three-stage procedure (2.1)-(2.2) to estimate
f as w=4+2y""+o(1).

Therefore, the "opportunity cost” of using the procedure (2.1)-(2.2) is equivalent to 4+ 2y}
observation in compariéon to the fixed sample size procedure had & been known. Letting

y =1 in the above cost we obtain the regret w=6+0(1) of the corresponding purely
one-by-one sequential procedure. It is obvious that

(N—=2YVa* ~ N0,27Y) as A — oo,

3.2 The gamma case

Let X;,X5,... be a iid. random variables with the common density
dF () =T @)z e+ for x>0, 6 >0, a 0,

where @ is known. The goal is to estimate @ under the loss function in (1.2). In view of
(1.1) we conclude that ¥(a)=—aln(a/6) and a=—a/f. Direct computation shows that
o=2/Va, B=(6/a)+3 and n'=AVal. If the triple sampling procedure (2.1)-(2.2) is
employed to estimate 8 Dby ?(N, we have from () of Lemma 3 that
E( X)) =0—(AVa) "'+ 0(A7"), and from (i) of Lemma 2 that E(N)==n" +(1/2) —2y"
+ o(1). By Theorem 2 the asymptotic regret turns out to be

w=2a" '+ (ay) "1+ 0(1).

It is evident from the above regret that the two parameters @ and 7y play a role in
determining the cost of using the three stage estimation procedure instead of the fixed sample
size procedure. When 0< @ {1 we expect higher opportunity costs than those for a >1. For
o =1 the distribution is exponential for which the opportunity cost. In particular, if we let
y — 1 in the above expression, we get the corresponding pure sequential asymptotic regret
obtained by Woodroofe (1977) for the same problem. For practical use many authors have
suggested to consider y=1/2.

Finally, we point out that results concerning other exponential family distributions can be
derived along the lines of the above examples using our findings in Lemma 2, Lemma 3, and

Theorem?.
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3.3 Simulations Results

In this section we assume estimating the scale parameter & of the exponential distribution
of the form

dF,,(x) =¢ —-x/ﬁ—ln(f/’),

where the result in section 3.2 still valid for a;=1 as well.

A series of 5000 simulation runs were generated to provide a feel for small, moderate to
large sample size performance of the proposed three stage point estimation sampling procedure

(2.1)-(2.2) under squared error loss function. The optimal sample size #" were allowed to
vary from small to large (5, 10, 15, 20, 25, 30, 50, 75, 100, 150, 200, 500, 1000) and we took
=1 in all cases. The design factor ¥, which represents the proportion of %' to be
estimated in the second stage phase ranged between 0.3, 0.5, 0.7, and 0.8 to study the effect
of increasing the factor on the final stage performance. The starting sample size wm were

permitted to vary from 10 to 15 to study the impact of increasing # on the final estimation

of 4, »n” and regret.

Table (I) presents the simulation results regarding the procedure (2.1)-(2.2) for different
values of 7, m and # . Each row in the table presents an estimate N of »n" and its

standard error S.E.(N). The point estimate @y of @ and its standard error S.E.( 9y)

and finally the regret @ of w.

Close inspection of the numerical findings shows perfect agreement with our theoretical

developments, presented in theorems 1 and 2 and Lemmas 1, 2 and 3. And the expectation of
the final stage sample approaches the optimal sample size #" as expected, where for small

values of #" the standard error of N increases as #° increases. The triple stage point

estimation @y approaches 1 in all cases and as noticed, the standard error S.E.( 9y)

decreases as #" increases. The estimated regret was negative in most cases which indicates
that the triple sampling procedure outperform the fixed sample size procedure had & been

known. We recommend the use of m=10 and y=0.5 for practical implementation of the
procedure.
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Table(I) Three-stage procedure to estimate the scale parameter of the

exponential distribution. (number of simulations=5000)

y=0.3 m= 10
N N S.E.(N) N S.E.( 9y @

5 10.009 0.002 1.0010 0.3135 0.0088
10 11.465 0.033 0.9922 0.2629 -8.5352
15 15.809 0.064 1.0076 0.2580 -14.1914
20 20477 0.086 0.9990 0.2362 -19.5230
25 24.958 0.102 0.9997 0.2178 -25.0416
30 29.503 0.117 0.9981 0.2020 -30.4972
50 47.696 0.178 0.9989 0.1535 ~52.3044
75 72.368 0.235 1.0012 0.1234 ~77.6316
100 97.301 0.273 1.0001 0.1042 -102.6994
150 147.171 0.340 1.0014 0.0847 -152.8292
200 197.049 0.391 1.0005 0.0727 -202.9512
500 497075 0.605 0.9990 0.0444 -502.9250

1000 996.812 0.848 1.0000 0.0313 -1003.1876
y=10.3 m=15
N N S.E.(N) Dy S.E.( By C

5 15.000 0.000 0.9947 0.2547 5.0000
10 15.082 0.007 1.0026 0.2513 -4.9182
15 16.780 0.038 1.0007 0.2226 ~13.2202
20 20.811 0.068 1.0028 0.2214 ~19.1886
25 25.395 0.089 0.9948 0.2048 ~24.6054
30 30.535 0.109 0.9983 0.1935 -20.4646
50 49.162 0.157 1.0004 0.1501 ~50.8382
75 72723 0.220 1.0013 0.1213 ~77.2774
100 97.148 0.269 0.9990 0.1050 -102.8518
150 147.143 0.327 1.0004 0.0832 -152.8568
200 197.243 0.386 1.0007 0.0744 -202.7570
500 497.486 0.608 0.9996 0.0456 -502.5136

1000 995.186 0.856 0.9991 0.0319 -1004.8144
ry=0.5 m=10
N N S.E.(N) By S.E.( 9y @

5 10.007 0.002 1.0015 0.3102 0.0074
10 11.516 0.032 1.0089 0.2721 -8.4840
15 15.410 0.056 1.0022 0.2585 ~14.5902
20 19.652 0.073 0.9982 0.2397 ~20.3476
25 24.282 0.092 1.0031 0.2133 ~25.7182
30 28.597 0.107 0.9976 0.1974 ~31.4034
50 48.433 0.149 0.9997 0.1546 ~51.5672
75 73.139 0.184 0.9988 0.1208 ~76.8610
100 97.906 0.214 0.9982 0.1040 -102.0840
150 148.202 0.259 1.0013 0.0844 -151.7978
200 188.003 0.302 0.9989 0.0714 -201.9970
500 497 591 0.475 0.9993 0.0459 ~-502.4090

1000 997.771 0.683 0.9993 0.0316 -1002.2290
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Table(I) - continue

7=0.5 m=15
N N S.E.(N) N S.E.( By @
5 15.000 0.000 0.9926 0.2562 5.0000
10 15.063 0.005 0.9986 0.2463 -4.9366
15 16.774 0.037 0.9981 0.2243 -13.2256
20 20.758 0.066 1.0002 0.2195 -19.2420
25 25.153 0.082 0.9983 0.2083 -24.8470
30 29.681 0.092 1.0011 0.1889 -30.3190
50 48.634 0.145 1.0016 0.1521 -51.3664
75 73.459 0.178 1.0005 0.1204 -76.5408
100 98.394 0.207 1.0002 0.1040 -101.6060
150 148.829 0.256 1.0019 0.0840 -151.1712
200 198.238 0.293 0.9998 0.0723 -201.7620
500 497944 0.470 0.9994 0.0449 -502.0562
1000 998.951 0.661 1.0000 0.0317 -1001.0490
y=10.7 m=10
N N S.E.(N) By S.E.C 9y P
5 10.008 0.002 1.0055 0.3161 0.0080
10 11.374 0.028 1.0010 0.2672 -8.6258
15 15.043 0.053 1.0027 0.2576 -14.9566
20 19.465 0.072 0.99R87 0.2366 -20.5350
25 24.228 0.087 0.9968 0.2164 -25.7716
30 29.328 0.098 1.0033 0.1982 -30.6724
50 49.460 0.129 0.9987 0.1472 -50.5404
75 74675 0.168 0.9976 0.1203 -75.3250
100 100.106 0.191 0.9992 0.1020 -99.8038
150 150.899 0.242 1.0015 0.0822 -149.1014
200 201.305 0.298 0.9999 0.0709 -198.6954
500 505.172 0.552 1.0005 0.0441 -494.8284
1000 1010.733 0.981 0.9993 0.0322 -989.2668
r=0.7 m=15
N N S.E.(N) By S.E.( By @
5 15.000 0.000 1.0011 0.2564 5.0000
10 15.069 0.006 0.9961 0.2485 -4.9306
15 16.687 0.034 0.9987 0.2252 -13.3132
20 20.342 0.060 0.9989 0.2249 -19.6578
25 24.683 0.076 1.0011 0.2082 -25.3172
30 29.303 0.091 1.0020 0.1948 -30.6972
50 49.253 0.124 1.0019 0.1490 -50.7468
7 74.184 0.156 0.9979 0.1200 -75.8160
100 99.520 0.180 1.0013 0.1015 -100.4796
150 149.828 0.222 1.0009 0.0828 ~150.1718
200 200.294 0.264 1.0012 0.0700 -199.7056
500 502.640 0.469 1.0015 0.0454 -497.3602
1000 1005.080 0.747 1.0000 0.0322 -994.9196
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Table(I) - continue
r=0.8 m=10
N N S.E.(N) By S.E.( 8y @
5 10.007 0.002 1.0008 0.3145 0.0074
10 11.313 0.027 1.0009 0.2723 -8.6868
15 15.106 0.054 1.0057 0.2537 -14.8942
20 19.704 0.072 0.9953 0.2312 -20.2958
25 24871 0.087 1.0000 0.2135 -25.1292
30 29.860 0.099 0.9986 0.1991 -30.1400
50 50.664 0.140 1.0008 0.1490 -49.3364
75 76.305 0.179 0.9977 0.1186 ~73.6952
100 102.401 0.213 1.0000 0.1002 -97.5992
150 154.481 0.303 0.9998 0.0809 -145.5188
200 206.369 0.373 1.0016 0.0712 -193.6312
500 518.088 0.854 1.0003 0.0437 -481.9116
1000 1034.826 1.551 1.0002 0.0312 -965.1738
r=0.8 m=15
N N S.E.(N) By S.E.( By) C

5 15.000 0.000 1.0019 0.2583 5.0000
10 15.065 0.006 0.9969 0.2459 -4.9346
15 16.564 0.032 0.9936 0.2251 -13.4364
20 20.169 0.058 1.0009 0.2189 -19.8310
25 24.760 0.077 1.0049 0.2103 -25.2396
30 29.601 0.090 1.0014 0.1916 -30.3986
50 49,915 0.125 1.0004 0.1481 ~50.0852
75 75.596 0.159 1.0006 0.1188 -74.4044
100 100.650 0.188 0.9990 0.1013 -99.3500
150 152.209 0.245 0.9989 0.0810 -147.7906
200 203.225 0.308 0.9983 0.0701 -196.7746
500 509.750 0.601 1.0004 0.0440 -490.2498
1000 1022.431 1.134 0.9998 0.0311 -977.5692
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