1 |
Wisner, C., H. D. Orville, and C. Myers, 1972: A numerical model of a hail-bearing cloud. J. Atmos. Sci., 29, 1160-1181.
DOI
|
2 |
Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42, 1487-1509.
DOI
|
3 |
Bae, S. Y., S.-Y. Hong, and W.-K. Tao, 2019: Development of a single-moment cloud microphysics scheme with prognostic hail for the Weather Research and Forecasting (WRF) Model. Asia-Pac. J. Atmos. Sci., 55, 233-245, doi:10.1007/s13143-018-0066-3.
DOI
|
4 |
Cohard, J.-M., and J.-P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 1815-1842.
DOI
|
5 |
Dudhia, J., S.-Y. Hong, and K.-S. Lim, 2008: A new method for representing mixed-phase particle fall speeds in bulk microphysics parameterizations. J. Meteor. Soc. Japan, 86A, 33-44.
DOI
|
6 |
Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25, 1658-1680.
DOI
|
7 |
Dawson, D. T. II, M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 1152-1171, doi:10.1175/2009MWR2956.1.
DOI
|
8 |
Dawson, D. T. II, E. R. Mansell, Y. Jung, L. J. Wicker, M. R. Kumjian, and M. Xue, 2014: Low-level ZDR signatures in supercell forward flanks: the role of size sorting and melting of hail. J. Atmos. Sci., 71, 276-299, doi:10.1175/JAS-D-13-0118.1.
DOI
|
9 |
Feingold, G., W. R. Cotton, S. M. Kreidenweis, and J. T. Davis, 1999: The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties. J. Atmos. Sci., 56, 4100-4117.
DOI
|
10 |
Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249-280.
DOI
|
11 |
Kogan, Y. L., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48, 1160-1189.
DOI
|
12 |
Ferrier, B. S., W.-K. Tao, and J. Simpson, 1995: A double-moment multiple-phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations. J. Atmos. Sci., 52, 1001-1033.
DOI
|
13 |
Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.
|
14 |
Igel, A. L., M. R. Igel, and S. C. van den Heever, 2015: Make it a double? Sobering results from simulations using single-moment microphysics schemes. J. Atmos. Sci., 72, 910-925, doi:10.1175/JAS-D-14-0107.1.
DOI
|
15 |
Khain, A. P., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159-224.
DOI
|
16 |
Khain, A. P., and Coauthors, 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247-322, doi:10.1002/2014RG000468.
DOI
|
17 |
Kong, F., and M. K. Yau, 1997: An explicit approach to microphysics in MC2. Atmos.-Ocean, 33, 257-291.
DOI
|
18 |
Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteorological Monographs volume 10. Amer. Meteor. Soc., 84 pp.
|
19 |
Kim, J.-H., D.-B. Shin, and C. Kummerow, 2013: Impacts of a priori databases using six WRF microphysics schemes on passive microwave rainfall retrievals. J. Atmos. Oceanic Technol., 30, 2367-2381, doi:10.1175/JTECH-D-12-00261.1.
DOI
|
20 |
Lang, S.-E., W.-K. Tao, J.-D. Chern, D. Wu, X. Li, 2014: Benefits of a fourth ice class in the simulated radar reflectivities of convective systems using a bulk microphysics scheme. J. Atmos. Sci., 71, 3583-3612, doi:10.1175/JAS-D-13-0330.1.
DOI
|
21 |
Mansell, E. R., 2008: EnKF analysis and forecast predictability of a tornadic supercell storm. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 5.2 [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_142059.htm].
|
22 |
Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models, Mon. Wea. Rev., 138, 1587-1612.
DOI
|
23 |
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor. Climatol., 22, 1065-1092.
DOI
|
24 |
Liu, C., K. Ikeda, G. Thompson, R. M. Rasmussen, and J. Dudhia, 2011: High-resolution simulations of wintertime precipitation in the Colorado Headwaters region: Sensitivity to physics parameterizations. Mon. Wea. Rev., 139, 3533-3553, doi:10.1175/MWR-D-11-00009.1.
DOI
|
25 |
Mansell, E. R., 2010: On sedimentation and advection in multi-moment bulk microphysics. J. Atmos. Sci., 67, 3084-3094, doi:10.1175/2010JAS3341.1.
DOI
|
26 |
Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 3-39.
DOI
|
27 |
Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051-3064.
DOI
|
28 |
Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065-3081.
DOI
|
29 |
Milbrandt, J. A., and H. Morrison, 2016: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part III: Introduction of multiple free categories. J. Atmos. Sci., 73, 975-995, doi:10.1175/JAS-D-15-0204.1.
DOI
|
30 |
Milbrandt, J. A., and R. McTaggart-Cowan, 2010: Sedimentation-induced errors in bulk microphysics schemes. J. Atmos. Sci., 67, 3931-3948, doi:10.1175/2010JAS3541.1.
DOI
|
31 |
Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287-311, doi:10.1175/JAS-D-14-0065.1.
DOI
|
32 |
Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 1665-1677.
DOI
|
33 |
Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991-1007.
DOI
|
34 |
Morrison, H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312-339, doi:10.1175/JAS-D-14-0066.1.
DOI
|
35 |
Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud. J. Meteor. Soc. Japan, 68, 107-128.
DOI
|
36 |
Ogura, Y., and T. Takahashi, 1973: The development of warm rain in a cumulus model. J. Atmos. Sci., 30, 262-277.
DOI
|
37 |
Seifert, A., 2008: On the parameterization of evaporation of raindrops as simulated by a one-dimensional rainshaft model. J. Atmos. Sci., 65, 3608-3619.
DOI
|
38 |
Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 1071-1107.
DOI
|
39 |
Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the ''seeder feeder'' process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185-1206.
DOI
|
40 |
Saleeby, S. M., and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor.Climatol., 43, 182-195.
DOI
|
41 |
Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92, 45-66.
DOI
|
42 |
Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 3636-3658, doi:10.1175/JAS-D-13-0305.1.
DOI
|
43 |
Onishi, R., and K. Takahashi, 2012: A warm-bin-cold-bulk hybrid cloud microphysical model. J. Atmos. Sci., 69, 1474-1497, doi:10.1175/JAS-D-11-0166.1.
DOI
|
44 |
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-4751STR, 113 pp.
|
45 |
Soong, S.-T., 1974: Numerical simulation of warm rain development in an axisymmetric cloud model. J. Atmos. Sci., 31, 1262-1285.
DOI
|
46 |
Straka, J. M., M. S. Gilmore, K. M. Kanak, and E. N. Rasmussen, 2005: A comparison of the conservation of number concentration for the continuous collection and vapor diffusion growth equations using one- and two-moment schemes. J. Appl. Meteor., 44, 1844-1849.
DOI
|
47 |
Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer Netherlands, 670 pp.
|
48 |
Tao, W.-K., and J. Simpson, 1993: Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 35-72.
DOI
|
49 |
Tapiador, F. J., J.-L. Sanchez, and E. Garcia-Ortega, 2019: Empirical values and assumptions in the microphysics of numerical models, Atmos. Res., 215, 214-238, doi:10.1016/j.atmosres.2018.09.010.
DOI
|
50 |
Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095-5115.
DOI
|
51 |
Wacker, U., and A. Seifert, 2001: Evolution of rain water profiles resulting from pure sedimentation: Spectral vs. parameterized description. Atmos. Res., 58, 19-39.
DOI
|