• Title/Summary/Keyword: trimethylammonium group

Search Result 11, Processing Time 0.618 seconds

Synthesis of Aminated GMA-DVB Copolymer and Their Adsorption Properties for Nitrate (아민화 GMA-DVB 공중합체의 합성과 질소 성분에 대한 흡착 특성)

  • 황택성;이선아;이면주
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.311-317
    • /
    • 2001
  • In this study, we synthesized bead-type GMA-DVB copolymer using glycidylmethacrylate (GMA) with high reactivity and hydrophilicity. Macrorecticular anion exchanger containing the trimethylammonium group were then prepared by amination with trimethylammonium chloride. We observed that the size of $NO_3^-$ is smaller than that of $SO_4^{2-}$ which disturb $NO_3^-$ removal in most of coexistent anions in ground water. Thus we investigated selective affinity for $NO_3^-$ and properties of individual ion exchangers with various DVB content. For each resins, we confirmed formation of copolymer by FT-IR spectrometer and investigated ion exchange capacity, swelling ratio, the amination yield and the effect with degree of crosslinking on adsorbability for nitrate. When amount of DVB is 4 wt%, amination yield, ion exchange capacity and swelling ratio was 384.3%, 3.25 meq/g and 77.1%, respectively. In these result, it can found that synthetic optimal condition is 4 wt% DVB content for monomer.

  • PDF

Natural Dyeing of Cationic-modified New Rayon (cocell) Fabric - Gallnut- (양이온화 뉴레이온(코셀) 직물의 천연염색에 관한 연구 - 오배자를 중심으로 -)

  • Kim, Ha-Yeon;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.21 no.3
    • /
    • pp.356-362
    • /
    • 2019
  • This study investigated the substantivity of anionic dyes for cationic-modified new rayon (cocell) fabric treated with cationic agent (CA), 3-(Chloro-2-hydroxypropyl)-trimethylammonium chloride (CA). We also investigate the dyeability of cationic-modified new rayon fabric after dyeing with gallut. CA was converted in an aqueous solution of sodium hydroxide into epoxypropyl trimethylammonium chloride. Treating with this epoxy reagent modified the hydroxyl groups of the new rayon fabric into the trimethylammonium group through ether linkage. The introduction of new cationic sites into new rayon fabric by pretreating with cationic agent improved the substantivity of the Gallnut dye with the new rayon dyebath. The degree of the cationization of cationic-modified new rayon and cotton fabric was evaluated by nitrogen (N) content. This study extracted the colorant of gallnut with hot water at $90^{\circ}C$ and 120 min. Cationic-modified new rayon fabric dyed with extracted solution from gallnut according to concentration of gallnut, dyeing temperature, dyeing time and concentration of cationic agent. Dyeability (K/S) was obtained by CCM observation after dyeing with gallut solution. In addition, fastness to washing and light were also investigated. The degree of crystallinity of new rayon and cotton fabric were 42.15% and 54.94%, respectively. N (%) content of cationic-modified new rayon was higher than the cationic-modified cotton. Dyeability (K/S) increased significantly with the increasing concentration of CA and gallut.

Studies on Biofunctional Synthetic Membranes -Poly(MTP-co-BMA-co-GMA) membrane-

  • 정석규;박수민
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1992.10a
    • /
    • pp.47-48
    • /
    • 1992
  • Polymer containing monomers with pendant phospholipid polar group, 2-(metha-cryloyoxy) ethyl-2-(trimethylammonium) ethyl phosphate(MTP) were synthesized and blood compatibility of the copolymers was evaluated. Good permeability of biocomponents of molecular weight below 10$^4$ through cellulosic membrane coated with the copolymer of 2-(methacryloyoxy) ethyl-2-(tri-methylammonium)ethyl phosphate, butylmethacrylate(BMA), and glycidyl methacrylate(GMA) was observed, (Fig.1).

  • PDF

Thermodynamic Elucidation of Binding Isotherms for Hemoglobin & Globin of Human and Bovine upon Interaction with Dodecyl Trimethyl Ammonium Bromide

  • Bordbar, A.K.;Nasehzadeh, A.;Ajloo, D.;Omidiyan, K.;Naghibi, H.;Mehrabi, M.;Khajehpour, H.;Rezaei-Tavirani, M.;Moosavi-Movahedi, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1073-1077
    • /
    • 2002
  • Binding of dodecyl trimethylammonium bromide (DTAB) to human and bovine hemoglobin and globin samples has been investigated in 50 mM glycine buffer pH = 10, I = 0.0318 and 300 K by equilibrium dialysis and temperature scanning spectrophotometry techniques and method for calculation of average hydrophobicity. The binding data has been analyzed, in terms of binding capacity concept $({\theta})$, Hill coefficient (nH) and intrinsic Gibbs free energy of binding $({\Delta}Gbv).$ The results of binding data, melting point (Tm) and average hydrophobicity show that human hemoglobin has more structural stability than bovine hemoglobin sample. Moreover the results of binding data analysis represent the systems with two and one sets of binding sites for hemoglobin and globin, respectively. It seems that the destabilization of hemoglobin structure due to removal of heme group, is responsible of such behavior. The results indicating the removal of heme group from hemoglobin caused the depletion of first binding set as an electrostatic site upon interaction with DTAB and exposing the hydrophobic patches for protein.

Studies on the Synthesis of Aminated PP-g-GMA Fibrous ion Exchanger by E-beam Pre-irradiation and Their Properties of Selective Adsorption for $NO_{3} ^{-}$ (E-beam 전조사에 의한 $NO_{3} ^{-}$ 선택 흡착용 아민화 PP-g-GMA 섬유 이온교환체의 합성과 그 특성에 관한 연구)

  • 황택성;이선아;이면주
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.153-159
    • /
    • 2002
  • In order to remove $NO_3;^-$ ion from ground-water, fibrous ion -exchangers, APP-g-GMA, were synthesized by GMA grafting onto PP trunk polymer with E-beam accelerator for pre-irradiation. Their degrees of grafting and amination yield increased up to $60^{\circ}C$ and showed maximum values as 133%, 88%, respectively. And their swelling ratio and ion exchange capacity at the maximum values are 86%, 2.5 meq/g, respectively which was higher than commercial ion-exchangers such as IMAC HP555 and Amberlite IRA 400. Optimum adsorption condition of $NO_3;^-$ ion was measured at pH 5~6 and -Cl form of APP-g-GMA containing trimethylammonium group showed the highest adsorption capacity.

Desalination performance of Al2O3 positively charged nanofiltration composite membrane

  • Li, Lian;Zhang, Xiating;Li, Lufen;Yang, Zhongcao;Li, Yuan
    • Membrane and Water Treatment
    • /
    • v.13 no.2
    • /
    • pp.105-110
    • /
    • 2022
  • Al2O3 positively charged nanofiltration composite membrane was successfully prepared with aluminate coupling agent (ACA) as modifier, sodium bisulfite (NaHSO3) and potassium persulfate (K2S2O8) as initiator and methacryloyloxyethyl trimethylammonium chloride (DMC) as crosslinking monomer. The surface of the membrane before grafting and after polymerization were characterized by SEM and FT-IR. Three factor and three-level orthogonal experiments were designed to explore the optimal conditions for membrane preparation, and the optimal group was successfully prepared. The filtration experiments of different salt solutions were carried out, and the retention molecular weight was determined by polyethylene glycol (PEG). The results showed that the polymerization temperature had the greatest effect on the rejection rate, followed by the reaction time, and the concentration of DMC had the least effect on the rejection rate. The rejection rates of CaCl2, MgSO4, NaCl and Na2SO4 in the optimal group were 83.8%, 81.3%, 28.1% and 23.6% (average value), respectively. The molecule weight cut-off of 90% (MWCO) of the optimal group was about 460, which belongs to nanofiltration membrane.

Development and Application of Biocompatible Polymers( I ) ―Biocompatibility of Cellulose Graft Copolymer with Phosphoryl Choline Groups― (생체적합성 고분자의 개발과 응용(I) ―Phosphoryl choline기를 가진 셀룰로오즈 그래프트 공중합체의 생체적합성―)

  • Lee, Mi Kyung;Kim, Moon Sik;Park, Soo Min
    • Textile Coloration and Finishing
    • /
    • v.6 no.4
    • /
    • pp.40-45
    • /
    • 1994
  • To improve the blood compatibility of cellulose membrane, 2-(methacryloyloxy)ethyl-2-(trimethylammonium)ethyl phosphate(MTP), which is a methacrylate with phospholipid polar group, and glycidyl methacrylate(GMA) were grafted simultaneously on the surface of membrane and the biocompatibility of grafted membrane was investigated. There was no difference of permeability between the MTP and GMA-grafted and the original cellulose membrane. The permeation pathway for a solute whose molecular weight was above 10$^{4}$ is maintained after grafting on the surface of membrane. The cellulose membrane grafted with MTP and GMA effectively suppressed thrombogenicity for the rabbit blood. This effect became more clear with increasing the surface distribution of phospholipid polar groups.

  • PDF

The Improvement of Dyeing Property of Cotton Fabric by Cationic Agent Treatment (카티온화제 처리에 의한 면직물의 염색성 개선)

  • Sung, Woo Kyung;Park, Sang Joo;Lee, Won Chul
    • Textile Coloration and Finishing
    • /
    • v.9 no.1
    • /
    • pp.33-43
    • /
    • 1997
  • This study was carried out to investigate increasing the neutral substantivity of anionic dyes for cationic-modified cotton fabric treatied with cationic agent. In the present study 3-chloro-2-hydroxypropyltrimethyl ammonium chloride for reactive cationic agent was produced by reaction of epichlorohydrine with trimethylamine hydrochloride. 3-chloro-2-hydroxypropyltrimethylammonium chloride was converted in an aqueous solution of sodium hydroxide into glycidyltrimethylammonium chloride. By treating with this epoxy reagent the hydroxyl groups of cotton fabric was modified to trimethylammonium group through ether linkage. The introduction of new cationic sites into cotton fabric by pretreating with cationic agent improves the substantivity of anionic dyes with the cotton in dyebath. Dyeablity of the modified cotton fabric for direct and reactive dyes was much improved in a non-electrolytic or a little electrolytic dyebath and was proportional to the concentration of cationic agent.

  • PDF

Development and Application of Biocompatible Polymers(III) - Biocompatibility of Silk Fibroin Membranes with Phosphoryl Choline Groups - (생체적합성 고분자의 개발과 응용(III) - Phosphoryl choline기를 가진 견피브로인막의 생체적합성 -)

  • Mi Kyung Lee;Young Hee Lee;Hae Wook Choi;Soo Min Park
    • Textile Coloration and Finishing
    • /
    • v.7 no.3
    • /
    • pp.38-43
    • /
    • 1995
  • To improve the biofunctional properties of silk fibroin membranes, 2-(methacryloyloxy)ethyl-2-(trimethylammonium)ethyl phosphate(MTP), which is a methacrylate with phospholipid polar groups grafted and poly(MTP-co-BMA) was coated on the surface of silk fibroin membranes. The permeability and biocompatibility of silk fibroin membranes with phosphoryl choline group were investigated. The permeability of a salt(NaCl) was increased with grafting by MTP. Futhermore, the poly(MTP-co-BMA)-coated silk fibroin membranes displayed less blood cell adhesion than the silk fibroin membranes.

  • PDF

Isolation of Surfactant-Resistant Pseudomonads from the Estuarine Surface Microlayer

  • Louvado, Antonio;Coelho, Francisco J.R.C.;Domingues, Patricia;Santos, Ana L.;Gomes, Newton C.M.;Almeida, Adelaide;Cunha, Angela
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.283-291
    • /
    • 2012
  • Bioremediation efforts often rely on the application of surfactants to enhance hydrocarbon bioavailability. However, synthetic surfactants can sometimes be toxic to degrading microorganisms, thus reducing the clearance rate of the pollutant. Therefore, surfactant-resistant bacteria can be an important tool for bioremediation efforts of hydrophobic pollutants, circumventing the toxicity of synthetic surfactants that often delay microbial bioremediation of these contaminants. In this study, we screened a natural surfactant-rich compartment, the estuarine surface microlayer (SML), for cultivable surfactant-resistant bacteria using selective cultures of sodium dodecyl sulfate (SDS) and cetyl trimethylammonium bromide (CTAB). Resistance to surfactants was evaluated by colony counts in solid media amended with critical micelle concentrations (CMC) of either surfactants, in comparison with non-amended controls. Selective cultures for surfactant-resistant bacteria were prepared in mineral medium also containing CMC concentrations of either CTAB or SDS. The surfactantresistant isolates obtained were tested by PCR for the Pseudomonas genus marker gacA gene and for the naphthalene-dioxygenase-encoding gene ndo. Isolates were also screened for biosurfactant production by the atomized oil assay. A high proportion of culturable bacterioneuston was tolerant to CMC concentrations of SDS or CTAB. The gacA-targeted PCR revealed that 64% of the isolates were Pseudomonads. Biosurfactant production in solid medium was detected in 9.4% of tested isolates, all affiliated with genus Pseudomonas. This study shows that the SML is a potential source of surfactant-resistant and biosurfactant-producing bacteria in which Pseudomonads emerge as a relevant group.