DOI QR코드

DOI QR Code

Thermodynamic Elucidation of Binding Isotherms for Hemoglobin & Globin of Human and Bovine upon Interaction with Dodecyl Trimethyl Ammonium Bromide

  • Bordbar, A.K. ;
  • Nasehzadeh, A. ;
  • Ajloo, D. ;
  • Omidiyan, K. ;
  • Naghibi, H. ;
  • Mehrabi, M. ;
  • Khajehpour, H. ;
  • Rezaei-Tavirani, M. ;
  • Moosavi-Movahedi, A.A.
  • Published : 2002.08.20

Abstract

Binding of dodecyl trimethylammonium bromide (DTAB) to human and bovine hemoglobin and globin samples has been investigated in 50 mM glycine buffer pH = 10, I = 0.0318 and 300 K by equilibrium dialysis and temperature scanning spectrophotometry techniques and method for calculation of average hydrophobicity. The binding data has been analyzed, in terms of binding capacity concept $({\theta})$, Hill coefficient (nH) and intrinsic Gibbs free energy of binding $({\Delta}Gbv).$ The results of binding data, melting point (Tm) and average hydrophobicity show that human hemoglobin has more structural stability than bovine hemoglobin sample. Moreover the results of binding data analysis represent the systems with two and one sets of binding sites for hemoglobin and globin, respectively. It seems that the destabilization of hemoglobin structure due to removal of heme group, is responsible of such behavior. The results indicating the removal of heme group from hemoglobin caused the depletion of first binding set as an electrostatic site upon interaction with DTAB and exposing the hydrophobic patches for protein.

Keywords

References

  1. Martin, D. W.; Mayes, P. A.; Rodwell, V. W. Harper's Review ofBiochemistry, 19th ed.; LMP: New York, 1983.
  2. Weissbluth, M. Molecular Biology Biochemistry and Biophysics,Hemoglobin Cooperative and Electronic Properties; Chapmanand Hall: USA. 1970.
  3. El-Antri, S.; Sire, O.; Aipert, B. Chem. Phys. Lett. 1989, 161, 47. https://doi.org/10.1016/S0009-2614(89)87029-0
  4. Jones, M. N. Chem. Soc. Rev. 1992, 21, 127. https://doi.org/10.1039/cs9922100127
  5. Moosavi-Movahedi, A. A.; Housaindokht, M. R. Int. J. Biol.Macromol. 1994, 16, 77. https://doi.org/10.1016/0141-8130(94)90018-3
  6. Tanford, C. Adv. Protein Chem. 1970, 24, 1. https://doi.org/10.1016/S0065-3233(08)60241-7
  7. Moosavi-Movahedi, A. A.; Naderi, G. A.; Farzami, B. Thermochim.Acta 1994, 239, 161.
  8. Saboury, A. A.; Bordbar, A. K.; Moosavi-Movahedi, A. A. Bull.Chem. Soc. Jpn. 1996, 69, 3031. https://doi.org/10.1246/bcsj.69.3031
  9. Rowe, E. C.; Tanford, C. Biochemistry 1973, 24, 4822.
  10. Bordbar, A. K.; Saboury, A. A.; Housaindokht, M. R.; Moosavi-Movahedi, A. A. J. Colloid and Interface Science 1997, 192, 415. https://doi.org/10.1006/jcis.1997.4999
  11. Bordbar, A. K.; Moosavi-Movahedi, A. A. Bull. Chem. Soc. Jpn.1996, 68, 2213.
  12. Moosavi-Movahedi, A. A.; Jones, M. N.; Pilcher, G. Int. J. Biol.Macromol. 1988, 10, 75. https://doi.org/10.1016/0141-8130(88)90014-1
  13. Few, A. V.; Ohewil, R. H. J. Colloid Sci. 1956, 11, 34. https://doi.org/10.1016/0095-8522(56)90016-2
  14. Kyte, J.; Doolitle, R. F. J. Mol. Biol. 1982, 157, 105. https://doi.org/10.1016/0022-2836(82)90515-0
  15. Bull, H. B.; Breeze, K. Arch. Biochem. Biophys. 1973, 161, 665.
  16. Wyman, J. J. Mol. Biol. 1965, 11, 631. https://doi.org/10.1016/S0022-2836(65)80017-1
  17. Di-Cera, E.; Gill, S. J.; Wyman, J. Proc. Natl. Acad. Sci. USA1988, 85, 449. https://doi.org/10.1073/pnas.85.2.449
  18. Hill, A. V. J. Physiol. 1910, 40, 4p.
  19. Jones, M. N.; Manley, P. J. Chem. Soc. Faraday Trans. 1 1980, 76,654. https://doi.org/10.1039/f19807600654
  20. Tipping, E.; Jones, M. N.; Skinner, H. A. J. Chem. Soc. FaradayTrans. 1 1974, 70, 1036.
  21. Oakes, J. J. Chem. Soc. Faraday Trans. 1 1974, 70, 2200. https://doi.org/10.1039/f19747002200
  22. Moosavi-Movahedi, A. A.; Saboury, A. A. J. Chem. Soc. Pak.1999, 21, 248.
  23. Ajloo, D.; Moosavi-Movahedi, A. A.; Sadeghi, M.; Gharibi, H.Biochimica Polinica Acta 2002, 49(2), 459.
  24. Kauzmann, W. Adv. Protein. Chem. 1959, 14, 1. https://doi.org/10.1016/S0065-3233(08)60608-7
  25. Stenberg, I. Z.; Scheraga, H. A. J. Biol. Chem. 1963, 238, 172.
  26. Nakano, M.; Yang, J. T. Arch. Biochem. Biophys. 1981, 207, 69. https://doi.org/10.1016/0003-9861(81)90009-6
  27. Goto, Y.; Fink, A. L. J. Mol. Biol. 1990, 214, 803. https://doi.org/10.1016/0022-2836(90)90334-I
  28. Moriyama, Y.; Sasaoka, H.; Ichiyanagi, T.; Takeda, K. J. ProteinChem. 1992, 11, 583. https://doi.org/10.1007/BF01024957
  29. Perutz, M. F.; Muirhead, H.; Cox, J. M.; Goaman, L. C. G. Nature1968, 211, 131.
  30. Beychok, S.; Tyoma, I.; Benesch, R. E.; Benesch, R. J. Biol.Chem. 1967, 242, 2460.
  31. Vasudevan, G.; McDonald, J. J. Protein Chem. 2000, 19, 583. https://doi.org/10.1023/A:1007150318854

Cited by

  1. -Galactosidase in the Presence of Galactose vol.2012, pp.2090-0414, 2012, https://doi.org/10.1155/2012/173831
  2. Kinetics of Denaturation of Human and Chicken Hemoglobins in the Presence of Co-solvents vol.36, pp.4, 2002, https://doi.org/10.5483/bmbrep.2003.36.4.367
  3. Binding and fluorescence study on interaction of human serum albumin (HSA) with cetylpyridinium chloride (CPC) vol.55, pp.1, 2007, https://doi.org/10.1016/j.colsurfb.2006.11.012
  4. Micellar histidinate hematin complex as an artificial peroxidase enzyme model: Voltammetric and spectroscopic investigations vol.320, pp.1, 2002, https://doi.org/10.1016/j.colsurfa.2008.01.047