• 제목/요약/키워드: trimethylammonium group

검색결과 11건 처리시간 0.019초

아민화 GMA-DVB 공중합체의 합성과 질소 성분에 대한 흡착 특성 (Synthesis of Aminated GMA-DVB Copolymer and Their Adsorption Properties for Nitrate)

  • 황택성;이선아;이면주
    • 폴리머
    • /
    • 제25권3호
    • /
    • pp.311-317
    • /
    • 2001
  • 본 연구에서는 반응성이 큰 친수성 단량체인 glycidylmethacrylate (GMA)를 이용하여 현탁중합법으로 bead type의 GMA-DVB 공중합체를 제조하고, 이들 공중합체를 trimethyl-ammonium chloride로 아민화하여 trimethylammonium기를 갖는 거대망상형 음이온 교환수지를 합성하였다. 여기서 지하수에 공존하는 음이온 중 $NO_3^-$ 제거에 가장 방해가 되는 $SO_4^{2-}$ 이 입체적으로 크다는 것에 착안하여 가교제인 divinylbenzene (DVB)의 양을 변화시켜 가교도에 따른 음이온에 대한 선택능을 확인하였고, 각각의 수지에 대한 물성과 $NO_3^-$ 에 대한 흡착능을 고찰하였다. 또한 FT-IR을 통하여 공중합체의 합성여부를 확인하였고, 또한 아민화 수율, 이온교환 용량 및 팽윤율을 평가하여 가교도에 따른 영향을 조사하였다. 여기서 DVB의 함량이 4wt%일 때 아민화 수율은 384.3%, 이온교환용량은 3.25 meq/g, 팽윤율은 77.1%로 가장 최적으로 나타났다.

  • PDF

양이온화 뉴레이온(코셀) 직물의 천연염색에 관한 연구 - 오배자를 중심으로 - (Natural Dyeing of Cationic-modified New Rayon (cocell) Fabric - Gallnut-)

  • 김하연;이신희
    • 한국의류산업학회지
    • /
    • 제21권3호
    • /
    • pp.356-362
    • /
    • 2019
  • This study investigated the substantivity of anionic dyes for cationic-modified new rayon (cocell) fabric treated with cationic agent (CA), 3-(Chloro-2-hydroxypropyl)-trimethylammonium chloride (CA). We also investigate the dyeability of cationic-modified new rayon fabric after dyeing with gallut. CA was converted in an aqueous solution of sodium hydroxide into epoxypropyl trimethylammonium chloride. Treating with this epoxy reagent modified the hydroxyl groups of the new rayon fabric into the trimethylammonium group through ether linkage. The introduction of new cationic sites into new rayon fabric by pretreating with cationic agent improved the substantivity of the Gallnut dye with the new rayon dyebath. The degree of the cationization of cationic-modified new rayon and cotton fabric was evaluated by nitrogen (N) content. This study extracted the colorant of gallnut with hot water at $90^{\circ}C$ and 120 min. Cationic-modified new rayon fabric dyed with extracted solution from gallnut according to concentration of gallnut, dyeing temperature, dyeing time and concentration of cationic agent. Dyeability (K/S) was obtained by CCM observation after dyeing with gallut solution. In addition, fastness to washing and light were also investigated. The degree of crystallinity of new rayon and cotton fabric were 42.15% and 54.94%, respectively. N (%) content of cationic-modified new rayon was higher than the cationic-modified cotton. Dyeability (K/S) increased significantly with the increasing concentration of CA and gallut.

Studies on Biofunctional Synthetic Membranes -Poly(MTP-co-BMA-co-GMA) membrane-

  • 정석규;박수민
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1992년도 추계 총회 및 학술발표회
    • /
    • pp.47-48
    • /
    • 1992
  • Polymer containing monomers with pendant phospholipid polar group, 2-(metha-cryloyoxy) ethyl-2-(trimethylammonium) ethyl phosphate(MTP) were synthesized and blood compatibility of the copolymers was evaluated. Good permeability of biocomponents of molecular weight below 10$^4$ through cellulosic membrane coated with the copolymer of 2-(methacryloyoxy) ethyl-2-(tri-methylammonium)ethyl phosphate, butylmethacrylate(BMA), and glycidyl methacrylate(GMA) was observed, (Fig.1).

  • PDF

Thermodynamic Elucidation of Binding Isotherms for Hemoglobin & Globin of Human and Bovine upon Interaction with Dodecyl Trimethyl Ammonium Bromide

  • Bordbar, A.K.;Nasehzadeh, A.;Ajloo, D.;Omidiyan, K.;Naghibi, H.;Mehrabi, M.;Khajehpour, H.;Rezaei-Tavirani, M.;Moosavi-Movahedi, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권8호
    • /
    • pp.1073-1077
    • /
    • 2002
  • Binding of dodecyl trimethylammonium bromide (DTAB) to human and bovine hemoglobin and globin samples has been investigated in 50 mM glycine buffer pH = 10, I = 0.0318 and 300 K by equilibrium dialysis and temperature scanning spectrophotometry techniques and method for calculation of average hydrophobicity. The binding data has been analyzed, in terms of binding capacity concept $({\theta})$, Hill coefficient (nH) and intrinsic Gibbs free energy of binding $({\Delta}Gbv).$ The results of binding data, melting point (Tm) and average hydrophobicity show that human hemoglobin has more structural stability than bovine hemoglobin sample. Moreover the results of binding data analysis represent the systems with two and one sets of binding sites for hemoglobin and globin, respectively. It seems that the destabilization of hemoglobin structure due to removal of heme group, is responsible of such behavior. The results indicating the removal of heme group from hemoglobin caused the depletion of first binding set as an electrostatic site upon interaction with DTAB and exposing the hydrophobic patches for protein.

E-beam 전조사에 의한 $NO_{3} ^{-}$ 선택 흡착용 아민화 PP-g-GMA 섬유 이온교환체의 합성과 그 특성에 관한 연구 (Studies on the Synthesis of Aminated PP-g-GMA Fibrous ion Exchanger by E-beam Pre-irradiation and Their Properties of Selective Adsorption for $NO_{3} ^{-}$)

  • 황택성;이선아;이면주
    • 폴리머
    • /
    • 제26권2호
    • /
    • pp.153-159
    • /
    • 2002
  • 본 연구에서는 지하수 중의 NO$_{3}^{-}$ 이온을 선택적으로 흡착 제거시키기 위하여 E-beam 전조사법에 의해 GMA 단량체를 폴리프로필렌 섬유 기재에 그라프트 반응시켜 PP-g-GMA 공중합체를 제조한 후 아민화 반응을 통하여 강염기성 APP-g-GMA 음이온교환수지를 합성하였다. 공중합체의 그라프트율 및 TMA에 의한 아민화율은 반응온도가 증가할수록 증가하였으며, $60^{\circ}C$일 때 각각 133%, 88% 최대치를 나타내었고, 이때의 팽윤율과 이온교환용량은 각각 86%, 2.5 meq/g으로 IMAC HP555, Amberlite IRA 400와 같은 상용 이온교환수지 보다 높게 나타났다. $NO_3;^-$ 이온흡착의 최적 조건은 pH 5~6이었으며, trimethylammonium 기를 갖는 -Cl형의 APP-g-GMA 이온교환체가 가장 높은 선택 흡착성을 나타냈다.

Desalination performance of Al2O3 positively charged nanofiltration composite membrane

  • Li, Lian;Zhang, Xiating;Li, Lufen;Yang, Zhongcao;Li, Yuan
    • Membrane and Water Treatment
    • /
    • 제13권2호
    • /
    • pp.105-110
    • /
    • 2022
  • Al2O3 positively charged nanofiltration composite membrane was successfully prepared with aluminate coupling agent (ACA) as modifier, sodium bisulfite (NaHSO3) and potassium persulfate (K2S2O8) as initiator and methacryloyloxyethyl trimethylammonium chloride (DMC) as crosslinking monomer. The surface of the membrane before grafting and after polymerization were characterized by SEM and FT-IR. Three factor and three-level orthogonal experiments were designed to explore the optimal conditions for membrane preparation, and the optimal group was successfully prepared. The filtration experiments of different salt solutions were carried out, and the retention molecular weight was determined by polyethylene glycol (PEG). The results showed that the polymerization temperature had the greatest effect on the rejection rate, followed by the reaction time, and the concentration of DMC had the least effect on the rejection rate. The rejection rates of CaCl2, MgSO4, NaCl and Na2SO4 in the optimal group were 83.8%, 81.3%, 28.1% and 23.6% (average value), respectively. The molecule weight cut-off of 90% (MWCO) of the optimal group was about 460, which belongs to nanofiltration membrane.

생체적합성 고분자의 개발과 응용(I) ―Phosphoryl choline기를 가진 셀룰로오즈 그래프트 공중합체의 생체적합성― (Development and Application of Biocompatible Polymers( I ) ―Biocompatibility of Cellulose Graft Copolymer with Phosphoryl Choline Groups―)

  • Lee, Mi Kyung;Kim, Moon Sik;Park, Soo Min
    • 한국염색가공학회지
    • /
    • 제6권4호
    • /
    • pp.40-45
    • /
    • 1994
  • To improve the blood compatibility of cellulose membrane, 2-(methacryloyloxy)ethyl-2-(trimethylammonium)ethyl phosphate(MTP), which is a methacrylate with phospholipid polar group, and glycidyl methacrylate(GMA) were grafted simultaneously on the surface of membrane and the biocompatibility of grafted membrane was investigated. There was no difference of permeability between the MTP and GMA-grafted and the original cellulose membrane. The permeation pathway for a solute whose molecular weight was above 10$^{4}$ is maintained after grafting on the surface of membrane. The cellulose membrane grafted with MTP and GMA effectively suppressed thrombogenicity for the rabbit blood. This effect became more clear with increasing the surface distribution of phospholipid polar groups.

  • PDF

카티온화제 처리에 의한 면직물의 염색성 개선 (The Improvement of Dyeing Property of Cotton Fabric by Cationic Agent Treatment)

  • Sung, Woo Kyung;Park, Sang Joo;Lee, Won Chul
    • 한국염색가공학회지
    • /
    • 제9권1호
    • /
    • pp.33-43
    • /
    • 1997
  • This study was carried out to investigate increasing the neutral substantivity of anionic dyes for cationic-modified cotton fabric treatied with cationic agent. In the present study 3-chloro-2-hydroxypropyltrimethyl ammonium chloride for reactive cationic agent was produced by reaction of epichlorohydrine with trimethylamine hydrochloride. 3-chloro-2-hydroxypropyltrimethylammonium chloride was converted in an aqueous solution of sodium hydroxide into glycidyltrimethylammonium chloride. By treating with this epoxy reagent the hydroxyl groups of cotton fabric was modified to trimethylammonium group through ether linkage. The introduction of new cationic sites into cotton fabric by pretreating with cationic agent improves the substantivity of anionic dyes with the cotton in dyebath. Dyeablity of the modified cotton fabric for direct and reactive dyes was much improved in a non-electrolytic or a little electrolytic dyebath and was proportional to the concentration of cationic agent.

  • PDF

생체적합성 고분자의 개발과 응용(III) - Phosphoryl choline기를 가진 견피브로인막의 생체적합성 - (Development and Application of Biocompatible Polymers(III) - Biocompatibility of Silk Fibroin Membranes with Phosphoryl Choline Groups -)

  • Mi Kyung Lee;Young Hee Lee;Hae Wook Choi;Soo Min Park
    • 한국염색가공학회지
    • /
    • 제7권3호
    • /
    • pp.38-43
    • /
    • 1995
  • To improve the biofunctional properties of silk fibroin membranes, 2-(methacryloyloxy)ethyl-2-(trimethylammonium)ethyl phosphate(MTP), which is a methacrylate with phospholipid polar groups grafted and poly(MTP-co-BMA) was coated on the surface of silk fibroin membranes. The permeability and biocompatibility of silk fibroin membranes with phosphoryl choline group were investigated. The permeability of a salt(NaCl) was increased with grafting by MTP. Futhermore, the poly(MTP-co-BMA)-coated silk fibroin membranes displayed less blood cell adhesion than the silk fibroin membranes.

  • PDF

Isolation of Surfactant-Resistant Pseudomonads from the Estuarine Surface Microlayer

  • Louvado, Antonio;Coelho, Francisco J.R.C.;Domingues, Patricia;Santos, Ana L.;Gomes, Newton C.M.;Almeida, Adelaide;Cunha, Angela
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권3호
    • /
    • pp.283-291
    • /
    • 2012
  • Bioremediation efforts often rely on the application of surfactants to enhance hydrocarbon bioavailability. However, synthetic surfactants can sometimes be toxic to degrading microorganisms, thus reducing the clearance rate of the pollutant. Therefore, surfactant-resistant bacteria can be an important tool for bioremediation efforts of hydrophobic pollutants, circumventing the toxicity of synthetic surfactants that often delay microbial bioremediation of these contaminants. In this study, we screened a natural surfactant-rich compartment, the estuarine surface microlayer (SML), for cultivable surfactant-resistant bacteria using selective cultures of sodium dodecyl sulfate (SDS) and cetyl trimethylammonium bromide (CTAB). Resistance to surfactants was evaluated by colony counts in solid media amended with critical micelle concentrations (CMC) of either surfactants, in comparison with non-amended controls. Selective cultures for surfactant-resistant bacteria were prepared in mineral medium also containing CMC concentrations of either CTAB or SDS. The surfactantresistant isolates obtained were tested by PCR for the Pseudomonas genus marker gacA gene and for the naphthalene-dioxygenase-encoding gene ndo. Isolates were also screened for biosurfactant production by the atomized oil assay. A high proportion of culturable bacterioneuston was tolerant to CMC concentrations of SDS or CTAB. The gacA-targeted PCR revealed that 64% of the isolates were Pseudomonads. Biosurfactant production in solid medium was detected in 9.4% of tested isolates, all affiliated with genus Pseudomonas. This study shows that the SML is a potential source of surfactant-resistant and biosurfactant-producing bacteria in which Pseudomonads emerge as a relevant group.