• Title/Summary/Keyword: triclosan

Search Result 45, Processing Time 0.03 seconds

Treatment with Phytoestrogens Reversed Triclosan and Bisphenol A-Induced Anti-Apoptosis in Breast Cancer Cells

  • Lee, Geum-A;Choi, Kyung-Chul;Hwang, Kyung-A
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.503-511
    • /
    • 2018
  • Triclosan (TCS) and bisphenol A (BPA) are endocrine-disrupting chemicals that interfere with the hormone or endocrine system and may cause cancer. Kaempferol (Kaem) and 3,3'-diindolylmethane (DIM) are phytoestrogens that play chemopreventive roles in the inhibition of carcinogenesis and cancer progression. In this study, the influence of TCS, BPA, Kaem, and DIM on proliferation and apoptotic abilities of VM7Luc4E2 breast cancer cells were examined. MTT assay revealed that TCS ($0.1-10{\mu}M$), BPA ($0.1-10{\mu}M$) and E2 ($0.01-0.0001{\mu}M$) induced significant cell proliferation of VM7Luc4E2 cells, which was restored to the control (0.1% DMSO) by co-treatment with Kaem ($30{\mu}M$) or DIM ($15{\mu}M$). Reactive oxygen species (ROS) production assays showed that TCS and BPA inhibited ROS production of VM7Luc4E2 cells similar to E2, but that co-treatment with Kaem or DIM on VM7Luc4E2 cells induced increased ROS production. Based on these results, the effects of TCS, BPA, Kaem, and DIM on protein expression of apoptosis and ROS production-related markers such as Bax and Bcl-xl, as well as endoplasmic reticulum (ER) stress-related markers such as $eIF2{\alpha}$ and CHOP were investigated by Western blot assay. The results revealed that TCS, and BPA induced anti-apoptosis by reducing ROS production and ER stress. However, Kaem and DIM effectively inhibited TCS and BPA-induced anti-apoptotic processes in VM7Luc4E2 cells. Overall, TCS and BPA were revealed to be distinct xenoestrogens that enhanced proliferation and anti-apoptosis, while Kaem and DIM were identified as natural chemopreventive compounds that effectively inhibited breast cancer cell proliferation and increased anti-apoptosis induced by TCS and BPA.

Risk Assessment of Triclosan, a Cosmetic Preservative

  • Lee, Jung Dae;Lee, Joo Young;Kwack, Seung Jun;Shin, Chan Young;Jang, Hyun-Jun;Kim, Hyang Yeon;Kim, Min Kook;Seo, Dong-Wan;Lee, Byung-Mu;Kim, Kyu-Bong
    • Toxicological Research
    • /
    • v.35 no.2
    • /
    • pp.137-154
    • /
    • 2019
  • Triclosan (TCS) is an antimicrobial compound used in consumer products. The purpose of current study was to examine toxicology and risk assessment of TCS based on available data. Acute toxicities of oral, transdermal and inhalation routes were low, and phototoxicity and neurotoxicity were not observed. Topical treatment of TCS to animal caused mild irritation. TCS did not induce reproductive and developmental toxicity in rodents. In addition, genotoxicity was not considered based on in vitro and in vivo tests of TCS. It is not classified as a carcinogen in international authorities such as International Agency for Research on Cancer (IARC). No-observed-adverse-effect level (NOAEL) was determined 12 mg/kg bw/day for TCS, based on haematoxicity and reduction of absolute and relative spleen weights in a 104-week oral toxicity study in rats. Percutaneous absorption rate was set as 14%, which was human skin absorption study reported by National Industrial Chemicals Notification and Assessment Scheme (NICNAS) (2009). The systemic exposure dosage (SED) of TCS has been derived by two scenarios depending on the cosmetics usage of Koreans. The first scenario is the combined use of representative cosmetics and oral care products. The second scenario is the combined use of rinse-off products of cleansing, deodorants, coloring products, and oral care products. SEDs have been calculated as 0.14337 mg/kg bw/day for the first scenario and 0.04733 mg/kg bw/day for the second scenario. As a result, margin of safety (MOS) for the first and second scenarios was estimated to 84 and 253.5, respectively. Based on these results, exposure of TCS contained in rinse-off products, deodorants, and coloring products would not pose a significant health risk when it is used up to 0.3%.

Non-Ionic Surfactants Antagonize Toxicity of Potential Phenolic Endocrine-Disrupting Chemicals, Including Triclosan in Caenorhabditis elegans

  • Alfhili, Mohammad A.;Yoon, Dong Suk;Faten, Taki A.;Francis, Jocelyn A.;Cha, Dong Seok;Zhang, Baohong;Pan, Xiaoping;Lee, Myon-Hee
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1052-1060
    • /
    • 2018
  • Triclosan (TCS) is a phenolic antimicrobial chemical used in consumer products and medical devices. Evidence from in vitro and in vivo animal studies has linked TCS to numerous health problems, including allergic, cardiovascular, and neurodegenerative disease. Using Caenorhabditis elegans as a model system, we here show that short-term TCS treatment ($LC_{50}$: ~0.2 mM) significantly induced mortality in a dose-dependent manner. Notably, TCS-induced mortality was dramatically suppressed by co-treatment with non-ionic surfactants (NISs: e.g., Tween 20, Tween 80, NP-40, and Triton X-100), but not with anionic surfactants (e.g., sodium dodecyl sulfate). To identify the range of compounds susceptible to NIS inhibition, other structurally related chemical compounds were also examined. Of the compounds tested, only the toxicity of phenolic compounds (bisphenol A and benzyl 4-hydroxybenzoic acid) was significantly abrogated by NISs. Mechanistic analyses using TCS revealed that NISs appear to interfere with TCS-mediated mortality by micellar solubilization. Once internalized, the TCS-micelle complex is inefficiently exported in worms lacking PMP-3 (encoding an ATP-binding cassette (ABC) transporter) transmembrane protein, resulting in overt toxicity. Since many EDCs and surfactants are extensively used in commercial products, findings from this study provide valuable insights to devise safer pharmaceutical and nutritional preparations.

The Effect of UV Intensity and Wavelength on the Photolysis of Triclosan (TCS) (광반응을 이용한 Triclosan 분해에서의 UV 광세기와 파장의 효과)

  • Son, Hyun-Seok;Choi, Seok-Bong;Khan, Eakalak;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.1006-1015
    • /
    • 2005
  • We investigated the effect of hydroxyl radicals on the photolysis of triclosan (TCS), which is a potent broad-spectrum antimicrobial agent. TCS degradation during the initial reaction time of 5 min followed a pseudo-first order kinetic model ai all light intensities at a wavelength of 365 nm and at the low light intensities at a wavelength of 254 nm. The photodegradation rate significantly increased with decreasing wavelength and increasing the UV intensities. The activity of hydroxyl radicals was suppressed when methanol was used as the solvent instead of water. An increase in the photon effect was observed when the UV intensity was higher than $5.77{\times}10^{-5}$ einstein $L^{-1}min^{-1}$ at 254 nm, and lower than $1.56{\times}10^{-4}$ einstein $L^{-1}min^{-1}$ at 365 nm. The quantum yield efficiency for the photolysis of TCS was higher at 365 nm than at 254 nm among the above mentioned UV intensities. Dibenzodichloro-p-dioxin (DCDD) and dibenzo-p-dioxin were detected as intermediates at both UV intensities of $1.37{\times}10^{-4}$ and $1.56{\times}10^{-4}$ einstein $L^{-1}min^{-1}$ at 365 nm. Dichlorophenol and phenol were also detected in all cases. Based on our findings, we presented a possible mechanism of TCS photolysis.

Evaluation of antifouling system of new antifouling agents using spores of the green alga, Ulva pertusa and diatom, Nitzschia pungens (초기 착생생물 Ulva pertusa 포자와 Nitzschia pungens를 이용한 신방오제의 방오능 검증)

  • Shin, Hyun-Woung;Kang, Seul-Gi;Son, Ji-Su;Jeon, Jae-Hyuk;Lee, Han-Joo;Jung, Sang-Mok;Smith, Celia M.
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.5
    • /
    • pp.736-742
    • /
    • 2015
  • Cosmopolitan green macroalga, Ulva pertusa is a widely spread species in most coastal waters. This benthic alga is appearing on marine objectives causes significantly economical and social problems. To prevent fouling organisms, new antifouling (AF) agents, such as ziram, diruon, zinc pyrithione, copper pyrithione, DBNPA and triclosan are used. However, the evaluations of new antifouling system of those agents strongly need more information on algae species for considering environment effect. Therefore, the purpose of this study was to evaluate the activity of antifouling system using Ulva spores and Nitzschia pungens. In addition, new AFS were evaluated the toxicity of microalga, Nitzschia pungens. In the motility of Ulva spores, ziram and zinc pyrithione were shown 50% higher inhibition motility than diuron, copper pyritione, DBNPA and triclosan. Ziram was appered the highest AFS of Ulva sore attachment. Copper pyrithione at the concentration of $100{\mu}g/L$ was inhibited 80% growth rate comparison of control. In conclusion, each new AF agents showed their specific AF activities against marine organisms based on this work.

Studies on the Anti-acne Effect of Agrimonia pilosa Ledeb. (선학초 추출물의 항여드름균 효능 연구)

  • Yoon, Chang-Soon;Kim, Hyun-Ju;Lim, Hye-Won;Kim, Bo-Hyeon;Kim, Hack-Soo;Choi, Shin-Wook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.1 s.55
    • /
    • pp.53-58
    • /
    • 2006
  • Agrimonia pilosa Ledeb. is a perennial plant, which naturally habitats in whole area of Korea, and where it is popularly used for the traditional remedies. In the present study, A. pilosa Ledeb. extract was prepared to determine the anti-acne effects and application possibility as a cosmetic resource. A pilosa Ledeb. was extracted with methanol and its anti-acne effect against Propionibacterium acnes was investigated via minimum inhibitory concentration (MIC) and paper disk diffusion method. The MIC of A. pilosa Ledeb. extract and triclosan was 0.05 mg/mL and 0.04 mg/mL, respectively. This implies that A. pilosa Ledeb. extract nay be an efficient anti-acne ingredient for cosmetics, considering that it is a crude extract. The paper disk diffusion assay showed that its anti-acne effect was similar to that of triclosan. Furthermore, A. pilosa Ledeb. extract effectively inhibited the growth of several aerobic microorganisms including Staphylococcus aureus. Finally, we examine the stability of the extract to temperature and pH. The extract was very stable to high temperatures ($70{\sim}121^{\circ}C$) and to pH ($pH 2{\sim}11$), suggesting its utilization for cosmetics.

Triclosan Resistant Bacteria from Sewage Water: Culture Based Diversity Assessments and Co-Resistance Profiling to Other Antibiotics

  • Salman, Muhmmad;Ul Bashar, Noor;Kiran, Uzma;Shafiq, Zuhra;Khan, Fareesa;Khan, Raees;Hussain, Farrukh;Bangash, Sudhair Abbas;Ahmad, Yasin;Ahmad, Shabir
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.89-94
    • /
    • 2022
  • Triclosan (TCS) is an antimicrobial agent used in various human personal care products against both gram-positive and gram-negative bacteria. The purpose of this study was to evaluate the presence of TCS-resistant bacteria in sewage water in Peshawar, Khyber Pakhtunkhwa (KPK), Pakistan, for the first time. TCS-supplemented Luria Bertani (LB) agar was used to isolate TCS-tolerant bacteria. A total of 17 TCS-resistant isolates were randomly selected from a large pool of bacteria that showed growth on TCS-supplemented LB agar. Based on gram staining and physiochemical characteristics, the isolated strains were identified as Salmonella typhi (n = 6), Escherichia coli (n = 4), Citrobacter freundii (n = 4), Proteus mirabilis (n = 1), Enterobacter cloacae (n = 1), and Pseudomonas aeruginosa (n = 1). The Triclosan mean minimum inhibitory concentrations (MICs) for the isolates of Salmonella typhi, Escherichia coli, Citrobacter freundii, Proteus mirabilis, Enterobacter cloacae, and Pseudomonas aeruginosa were 23.66 ㎍ ml-1, 18.75 ㎍ ml-1, 42 ㎍ ml-1, 32 ㎍ ml-1, 64 ㎍ ml-1, and 128 ㎍ ml-1, respectively. The antibiogram revealed that all isolates were resistant to penicillin G (100%) and linezolid (100%), followed by ampicillin (94%), tetracycline (76%), tazobactam (76%), sulbactam/cefoperazone (64%), polymyxin PB (58%), amikacin (29.41%), aztreonam (29.41%), imipenem (5%), and gentamicin (5%). This is the first known study regarding the isolation of TCS-tolerant bacteria from sewage water in Peshawar, KPK, Pakistan. It was concluded that all the TCS-resistant isolates were multidrug resistant (MDR) gram-negative rod-shaped bacteria, mostly belonging to the Enterobacteriaceae family.

Evaluation of Irritating Potential of Newly Developed Toothpaste in the Hamster Oral Mucous Membrane

  • Kim, Bae-Hwan;Kim, Jin-Woo;Chang, Ih-Seop;Sim, Young-Chul;Lee, Yong-Soon
    • Toxicological Research
    • /
    • v.17 no.3
    • /
    • pp.167-171
    • /
    • 2001
  • Oral mucous membrane test using Syrian hamsters was performed to evaluate the reliability as a model system for the assessment of the potentially irritating substances intended for the mucous membranes, and to determine the irritating potential of a new emulsion-type formulated toothpaste. After test substances were implanted into the cheek pouches of hamsters with diluents (20 mg/kg) under pento-barbital sodium anesthesia, we made the comparison in irritation between emulsion-type and dispersion-type of triclosan (TCS) formulations in the range of 0.2% to 0.3%. The emulsion-type formulations using non-ionic surfactant showed less mucosal lesion than other commercial toothpastes with 0.3% TCS, or dispersion-type ones. However, no significant difference in irritation was detected between 0.2% and 0.3% TCS. We report that this hamster cheek pouch method could be a reliable approach for the evaluation slight difference in the irritating potentials of cosmetics and hygiene products intended for the lips or other mucous membranes, and this method showed that the new emulsion-type formulation significantly lowered the TCS-induced toxicity, compared with other commercial toothpastes.

  • PDF

Degradation of Triclosan by the Photolysis, the Fenton, and the Hybrid Reaction with Fe$^{2+}$ and UV : A Comparative Study (광반응, 펜톤, 그리고 Fe$^{2+}$와 UV의 조합반응을 이용한 Triclosan의 분해 : 공정 비교 연구)

  • Son, Hyun-Seok;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.517-523
    • /
    • 2008
  • The degradation mechanism of Triclosan(TCS), which is a potent broad-spectrum antimicrobial agent and has been considered as an emerging pollutant, was investigated in the Fenton and the hybrid reaction with Fe$^{2+}$ and UV-C. The results show that the Fe$^{2+}$ is oxidized to 30% by $H_2O_2$, 28% by UV-C, and 15% by UV-A for 10 min. The degradation rate of TCS for beginning time(10 min) was higher in UV-C only reaction than that in hybrid reaction, which of the order was inverted according to the lapse of reaction time. The effect of methanol was the greatest in Fenton reaction, in which the degradation rate of TCS decreased from 90% to 5% by the addition of methanol. Chloride, ionic intermediate, was produced to 77% for 150 min of hybrid reaction(Fe$^{2+}$ + UV-C), which was the greatest. In case with methanol, the generation rate of chloride for 15 min was ignorable in all reactions($\leq$2%) but the hybrid reaction with Fe$^{2+}$ and UV-C(12%). Additionally, the removal rate of TOC in each reaction was estimated as the followed orders; Fe$^{2+}$ + UV-C > Fe$^{2+}$ + $H_2O_2$ > Fe$^{2+}$ + UV-A > UV-C > UV-A. However, the Fenton reaction was almost stopped after 90 min because the reaction between Fe$^{2+}$ and $H_2O_2$ cannot be kept on without adding the oxidant. The phenomena was not observed in the hybrid reaction. In view of generating chloride, the reductive degradation of TCS may be in the hybrid reaction with Fe$^{2+}$ and UV-C, which is favorable to mineralize halogenated organic compounds such as TCS. Consequently, the hybrid process with Fe$^{2+}$ and UV-C may be considered as the alternative treatment method for TCS.

The Studies on the Development of Low Irritable Preservative System with Phenoxyethanol in Cosmetics (Phenoxyethanol을 이용한 저자극 방부시스템 개발에 관한 연구)

  • Ahn, Gi-Woong;Lee, Chn-Mong;Kim, Hyeong-Bae;Jeong, Ji-Hen;Jo, Byoung-Kee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.43-49
    • /
    • 2005
  • Recently, according as people who have sensitive skin increase, we've been giving more importance to the safety of cosmetics. Especially, preservative is known to be one of the main stimuli which cause side-effects of cosmetics. However, there have been few reports describing cell cytotoxicity, skin penetration, oil-aqueous phase partition, anti-microbial activity of preservatives and their correlation with skin irritation. The study is aimed to develop low irritable preservative system with phenoxyethanol, one of the most commonly used preservatives in cosmetics, considering various factors mentioned above. According to our results of cell cytotoxicity against human normal fibroblasts by means of MTT assay, phenoxyethanol showed the lowest cytotoxicity when compared to other preservatives tested (cytotoxicity: pro-pylparaben > butylparaben > ethylparaben > methylparaben > triclosan > phenoxyethanol), but human patch test for assessing shin primary irritation revealed that phenoxyethanol has higher skin irritation than methylparaben and triclosan. We performed in vitro skin penetration test using horizontal Franz diffusion cells with skin membrane prepared from hairless mouse (5 ${\~}$ 8 weeks, male) to evaluate the rate of skin penetration of preservatives. From the results, we found that the higher irritable property of phenoxyethanol in human skin correlates with its predominant permeability (skin penetration: phenoxyethanol > methylparaben > ethylparaben > propylparaben > butylfaraben > triclosan). Therefore, we made an effort to reduce skin permeability of phenoxyethanol and found that not only the rate of skin penetration of phenoxyethanol but also its skin irritation is dramatically reduced in formulas containing oils with low polarity. In the experiments to investigate the effect of oil polarity on the oil-aqueous phase partition of phenoxyethanol, more than $70\%$ of phenoxyethanol was partitioned in aqueous phase in formulas containing oils with low polarity, while about $70 {\~} 90\%$ of phenoxyethanol was partitioned in oil phase in formulas containing oils with high polarity. Also, in aqueous phase phenoxyethanol showed greater anti-microbial activity. Conclusively, it appears that we can develop less toxic preservative system with reduced use dosage of phenox-yethanol and its skin penetration by changing oil composition in formulas.