• Title/Summary/Keyword: triangular mesh

Search Result 190, Processing Time 0.022 seconds

Streaming of Solid Models Using Cellular Topology (셀룰러 토폴로지를 이용한 솔리드 모델 스트리밍)

  • Lee, Jae-Yeol;Kim, Hyun
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.87-92
    • /
    • 2003
  • Progressive mesh representation and generation have become one of the most important issues in network-based computer graphics. However, current researches are mostly focused on triangular mesh models. On the other hand, solid models are widely used in industry and are applied to advanced applications such as product design and virtual assembly. Moreover, as the demand to share and transmit these solid models over the network is emerging, the generation and the transmission of progressive solid models depending on specific engineering needs and purpose are essential. In this paper, we present a Cellular Topology-based approach to generating and transmitting progressive solid models from a feature-based solid model for internet-based design and collaboration. The proposed approach introduces a new scheme for storing and transmitting solid models over the network. The Cellular Topology (CT) approach makes it possible to effectively generate progressive solid models and to efficiently transmit the models over the network with compact model size.

Haptic Display of A Puncture Task with 4-legged 6 DOF Parallel Haptic Device (6자유도 병렬형 햅틱장치를 이용한 구멍뚫기 작업의 햅틱 디스플레이)

  • 김형욱;서일홍
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.6
    • /
    • pp.1-10
    • /
    • 2004
  • A haptic rendering system is proposed for a puncture task of a virtual vertebra model. To build a mesh model from medical images, Delaunay triangulation is applied and physical models are based on elasticity theory. Also, a redundant actuated 6 DOF parallel type haptic device is designed to display large force and to resolve the singularity problem of parallel type mechanisms. Haptic feeling of puncture task and the performance of the proposed haptic device are tested by two puncture task experiments.

Towards improving finite element solutions automatically with enriched 2D solid elements

  • Lee, Chaemin;Kim, San
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.379-393
    • /
    • 2020
  • In this paper, we propose an automatic procedure to improve the accuracy of finite element solutions using enriched 2D solid finite elements (4-node quadrilateral and 3-node triangular elements). The enriched elements can improve solution accuracy without mesh refinement by adding cover functions to the displacement interpolation of the standard elements. The enrichment scheme is more effective when used adaptively for areas with insufficient accuracy rather than the entire model. For given meshes, an error for each node is estimated, and then proper degrees of cover functions are applied to the selected nodes. A new error estimation method and cover function selection scheme are devised for the proposed adaptive enrichment scheme. Herein, we demonstrate the proposed enrichment scheme through several 2D problems.

Fast Algorithm for the Capacitance Extraction of Large Three Dimensional Object (대용량 3차원 구조의 정전용량 계산을 위한 Fast Algorithm)

  • Kim, Han;Ahn, Chang-Hoi
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.375-379
    • /
    • 2002
  • 본 논문에서는 수 만개이상의 미지수를 필요로 하는 복잡한 3차원 구조에서의 정전용량 추출을 위한 고속화 알고리즘(Fast mutilpole method)과 결합한 효과적인 적응 삼각요소 분할법(Adaptive triangular mesh refinement algorithm)을 제안하였다. 요소세분화과정은 초기요소로 전하의 분포를 구하고, 전하밀도가 높은 영역에서의 요소세분화를 수행하여 이루어진다. 제안된 방법을 이용하여 많은 미지수를 필요로 하는 IC packaging 구조에서의 정전용량을 추출하였다.

  • PDF

A Performance Study of First-order Shear Deformable shell Element Based on Loop Subdivision Surface (루프서브디비전 곡면을 이용한 일차전단 변형 쉘요소의 성능에 관한 연구)

  • 김형길;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.261-268
    • /
    • 2003
  • A first order shear deformable Loop-subdivision triangular element which can handle transverse shear deformation of moderately thick shell is developed. The developed element is general since it includes the effect of transverse shear deformation and has standard six degrees of freedom per node.(three translations and three rotations) The quartic box-spline function is employed as interpolation basis function. Numerical examples for the benchmark problems are analyzed in order to assess the performance of the newly developed subdivision shell element. Both in the uniform and in the distorted mesh configurations.

  • PDF

A General Tool Surface Contact Search and its Application to 3-D Sheet Forming (일반적인 금형면에서의 접촉탐색과 3차원 박판성형에의 응용)

  • 서의권;심현보
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.121-124
    • /
    • 1997
  • In the present study, a general tool surface contac search ad check algorithm is proposed. A general tool surface is described by triangular FE mesh. To check a proposed algorithm, clover cup and L-shape cup deep drawing processes are calculated. The elastic-plastic FEM using SEAM (Shear Energy Augmented Membrane) element is adapted for numerical stability.

  • PDF

3-D FEM Analysis of Forming Processes of Planar Anisotropic Sheet Metal (평면이방성 박판성형공정의 3차원 유한요소해석)

  • 이승열;금영탁;박진무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2113-2122
    • /
    • 1994
  • The 3-D FEM analysis for simulating the stamping operation of planar anisotropic sheet metals with arbitrarily-shaped tools is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The consistent full set of governing relations, comprising equilibrium equation and mesh-normal geometric constraints, is appropriately linearized. The linear triangular elements are used for depicting the formed sheet, based on membrane approximation. Barlat's non-quadratic anisotropic yield criterion(strain-rate potential) is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and non-quadratic function parameter. The planar anisotropic finite element formulation is tested with the numerical simulations of the stamping of an automotive hood inner panel and the drawing of a hemispherical punch. The in-plane anisotropic effects on the formability of both mild steel and aluminum alloy sheet metals are examined.

Trimming Line Design using Incremental Development Method and Finite Element Inverse Method (점진 전개기법 및 유한요소 역해석법을 이용한 자동차 패널 트리밍 라인 설계)

  • Chung, W.J.;Park, C.D.;Song, Y.J.;Oh, S.W.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.445-452
    • /
    • 2006
  • In most of automobile body panel manufacturing, trimming process is generally performed before flanging. To find feasible trimming line is crucial in obtaining accurate edge profile after flanging. Section-based method develops blank along manually chosen section planes and find trimming line by generating loop of end points. This method suffers from inaccurate results of edge profile. On the other hand, simulation-based method can produce more accurate trimming line by iterative strategy. In this study, new fast simulation-based method to find feasible trimming line is proposed. Finite element inverse method is used to analyze the flanging process because final shape after flanging can be explicitly defined and most of strain paths are simple in flanging. In utilizing finite element inverse method, the main obstacle is the initial guess generation for general mesh. Robust initial guess generation method is developed to handle genera] mesh with very different size and undercut. The new method develops final triangular mesh incrementally onto the drawing tool surface. Also in order to remedy mesh distortion during development, energy minimization technique is utilized. Trimming line is extracted from the outer boundary after finite element inverse method simulation. This method has many advantages since trimming line can be obtained in the early design stage. The developed method is verified by shrink/stretch flange forming and successfully applied to the complex industrial applications such as door outer flanging process.

Real-Time GPU Technique for Extracting Mesh Isosurfaces from BCC Volume Datasets (BCC 볼륨 데이터로부터 실시간으로 메시 형태의 등가면을 추출하는 GPU 기법)

  • Kim, Hyunjun;Kim, Minho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.4
    • /
    • pp.17-26
    • /
    • 2020
  • We present a real-time GPU(Graphic Processing Unit) marching tetrahedra technique that extracts isosurfaces in the indexed mesh format from BCC(Body Centered Cubic) volume datasets. Compared to classical marching tetrahedra, our method shows better performance with little memory overhead. Our technique is composed of five stages. In the first stage, which needs to be done only once, we build min/max blocks that is to be used for empty space skipping to boost the performance. Next, we extract active blocks that contain the current isovalue. In the next two stages, we extract the edges and cells that contain the isosurface and then the final triangular mesh is generated in the last stage. When applied 5123 or higher resolution volume dataset, our technique shows up to 5 times speed improvement compared to the classical marching tetrahedra algorithm.

An edge-based smoothed finite element method for adaptive analysis

  • Chen, L.;Zhang, J.;Zeng, K.Y.;Jiao, P.G.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.767-793
    • /
    • 2011
  • An efficient edge-based smoothed finite element method (ES-FEM) has been recently developed for solving solid mechanics problems. The ES-FEM uses triangular elements that can be generated easily for complicated domains. In this paper, the complexity study of the ES-FEM based on triangular elements is conducted in detail, which confirms the ES-FEM produces higher computational efficiency compared to the FEM. Therefore, the ES-FEM offers an excellent platform for adaptive analysis, and this paper presents an efficient adaptive procedure based on the ES-FEM. A smoothing domain based energy (SDE) error estimate is first devised making use of the features of the ES-FEM. The present error estimate differs from the conventional approaches and evaluates error based on smoothing domains used in the ES-FEM. A local refinement technique based on the Delaunay algorithm is then implemented to achieve high efficiency in the mesh refinement. In this refinement technique, each node is assigned a scaling factor to control the local nodal density, and refinement of the neighborhood of a node is accomplished simply by adjusting its scaling factor. Intensive numerical studies, including an actual engineering problem of an automobile part, show that the proposed adaptive procedure is effective and efficient in producing solutions of desired accuracy.