• Title/Summary/Keyword: triangular mesh

Search Result 190, Processing Time 0.023 seconds

Mesh Simplification using New Approximate Mean Curvatures (새로운 근사 평균 곡률을 이용한 메쉬 단순화)

  • Kwak, Jae-Hee;Lee, Eun-Jeong;Yoo, Kwan-Hee
    • Journal of Korea Game Society
    • /
    • v.2 no.2
    • /
    • pp.28-36
    • /
    • 2002
  • In general, triangular meshes have been used for modeling geometric objects such as virtual game characters. The dense meshes give us considerable advantages in representing complex, highly detailed objects, while they are more expensive for storing, transmitting and rendering the objects. Therefore, several researches have been performed for producing a high quality approximation in place of detailed objects, that is, a simplification of triangular meshes. In this paper, we propose a new measure with respect to edges and vertices, which is called an approximate mean curvature and is used as criteria to simplify an original mesh. An edge mean curvature is computed by considering its neighboring edges, and a vertex mean curvature is defined as an average of its incident edges' mean curvatures. And we apply the proposed measure to simplify the models such as a bunny, dragon and teeth. As a result, we can see that the mean curvatures can be used as good criteria for providing much better approximation of models.

  • PDF

The Alignment of Triangular Meshes Based on the Distance Feature Between the Centroid and Vertices (무게중심과 정점 간의 거리 특성을 이용한 삼각형 메쉬의 정렬)

  • Minjeong, Koo;Sanghun, Jeong;Ku-Jin, Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.12
    • /
    • pp.525-530
    • /
    • 2022
  • Although the iterative closest point (ICP) algorithm has been widely used to align two point clouds, ICP tends to fail when the initial orientation of the two point clouds are significantly different. In this paper, when two triangular meshes A and B have significantly different initial orientations, we present an algorithm to align them. After obtaining weighted centroids for meshes A and B, respectively, vertices that are likely to correspond to each other between meshes are set as feature points using the distance from the centroid to the vertices. After rotating mesh B so that the feature points of A and B to be close each other, RMSD (root mean square deviation) is measured for the vertices of A and B. Aligned meshes are obtained by repeating the same process while changing the feature points until the RMSD is less than the reference value. Through experiments, we show that the proposed algorithm aligns the mesh even when the ICP and Go-ICP algorithms fail.

Motion Estimation Using Dynamic Regular Mesh (동적 정규화 메쉬를 이용한 움직임 추정)

  • Lee, Dong-Gyu;Lee, Du-Su
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.6
    • /
    • pp.599-607
    • /
    • 2001
  • In Conventional BMA, the motion vector can describe only translational movement and blocking noise is generated. To overcome this defect, motion estimation using triangular mesh has been proposed. The regular mesh is the method of dividing the image area into equal size triangle and haying the same node connection. It has no additional information about mesh structure, but do not reflect the real motion because it represents the regions by equal mesh structure regardless of the amount of motion. In this paper, motion estimation using dynamic regular mesh is proposed, In this method, the mesh structure is varied from the amount of motion and maintain the form of regular mesh. By the simulation, proposed method have better performance in PSNR and is superior to the other method in convergence rate.

  • PDF

Two-Dimensional(2-D) Flood Inundation Modeling Considering Mesh Type and Resolution (격자유형과 해상도를 고려한 2차원 홍수범람 모델링)

  • Kim, Byunghyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.247-256
    • /
    • 2019
  • In this study, 2-D Godunov type finite volume model which can apply the mixed mesh including triangular and quadrilateral meshes for flood inundation modeling is used to compare and analyze the flood height, flood extent and model execution time according to mesh type and resolution. The study area is the Upton-upon Severn watershed in Great Britain, where the flood occurred for 22 days from October 29 to November 19, 2000. For the flood modeling, topographic data were constructed using high resolution LiDAR (Light Detection And Ranging). The results of the 2-D flood modeling by the mesh type and resolution were compared with four ASAR (Airborne Synthetic Aperture Radar) images captured during the flood period. This study has shown that flood height and extent can vary greatly depending on the mesh type and resolution, even if identical topography and boundary conditions are used, and that the selection of appropriate mesh type and resolution for the purpose and situation of the 2-D flood modeling is necessary.

Advanced Design Environmental With Adaptive And Knowledge-Based Finite Elements

  • Haghighi, Kamyar;Jang, Eun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1222-1229
    • /
    • 1993
  • An advanced design environment , which is based on adaptive and knowledge -based finite elements (INTELMESH), has been developed. Unlike other approaches, INTEMMESH incorporates the information about the object geometry as well as the boundary and loading conditions to generate an ${\alpha}$-priori finite element mesh which is more refined around the critical regions of the problem domain. INTEMMESH is designed for planar domains and axisymmetric 3-D structures of elasticity and heat transfer subjected to mechanical and thermal loading . It intelligently identifies the critical regions/points in the problem domain and utilize the new concepts of substructuring and wave propagation to choose the proper mesh size for them. INTEMMESH generates well-shaped triangular elements by applying trangulartion and Laplacian smoothing procedures. The adaptive analysis involves the intial finite elements analyze and an efficient ${\alpha}$-posteriori error analysis involves the initial finite element anal sis and an efficient ${\alpha}$-posteriori error analysis and estimation . Once a problem is defined , the system automatically builds a finite element model and analyzes the problem though automatic iterative process until the error reaches a desired level. It has been shown that the proposed approach which initiates the process with an ${\alpha}$-priori, and near optimum mesh of the object , converges to the desired accuracy in less time and at less cost. Such an advanced design/analysis environment will provide the capability for rapid product development and reducing the design cycle time and cost.

  • PDF

Mesh Parameterization based on Mean Value Coordinates (중간값 좌표계에 기초한 메쉬 매개변수화)

  • Kim, Hyoung-Seok B.
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1377-1383
    • /
    • 2008
  • Parameterization of a 3D triangular mesh is a fundamental problem in various applications of geometric modeling and computer graphics. There are two major paradigms in mesh parameterization: energy functional minimization and the convex combination approach. In general, the convex combination approach is wifely used because of simple concept and one-to-one mapping. However, the approach has some problems such as high distortion near the boundary and time complexity. Moreover, the stability of the linear system may not be preserved according to the geometric information of the mesh. In this paper, we present an extension of the convex combination approach based on the mean value coordinates, which resolves the drawbacks of the convex combination approach. This may be a more practical solution because it is able to generate a stable linear system in a short time.

Finite Element Analysis of Collapse of a Water Dam Using Filling Pattern Technique and Adaptive Grid Refinement of Triangular Elements (삼각형 요소의 형상 충전 및 격자 세분화를 이용한 붕괴하는 물 댐의 유한 요소 해석)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.395-405
    • /
    • 2004
  • The filling pattern and an adaptive grid refinement based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The mixed FE formulation and predictor-corrector method are used effectively for unsteady numerical simulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among four filling patterns at each triangular control volume. By adaptive grid refinement, the new flow field that renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. In this domain the elements in the surface region are made finer than those in the remaining regions for more efficient computation. Using the proposed numerical technique, the collapse of a water dam has been analyzed to predict flow phenomenon of fluid and the predicted front positions with respect to time have been compared with the reported experimental results.

The elastoplastic formulation of polygonal element method based on triangular finite meshes

  • Cai, Yong-Chang;Zhu, He-Hua;Guo, Sheng-Yong
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.119-129
    • /
    • 2008
  • A small strain and elastoplastic formulation of Polygonal Element Method (PEM) is developed for efficient analysis of elastoplastic solids. In this work, the polygonal elements are constructed based on traditional triangular finite meshes. The construction method of polygonal mesh can directly utilize the sophisticated triangularization algorithm and reduce the difficulty in generating polygonal elements. The Wachspress rational finite element basis function is used to construct the approximations of polygonal elements. The incremental variational form and a von Mises type model are used for non-linear elastoplastic analysis. Several small strain elastoplastic numerical examples are presented to verify the advantages and the accuracy of the numerical formulation.

Finite Element Analysis of Transient Viscous Flow with Free Surface using Filling Pattern Technique (형상 충전 기법을 이용한 자유표면의 비정상 점성 유동장의 유한 요소 해석)

  • Kim, Ki-Don;Jeong, Jun-Ho;Yang, Dong-Yol
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.551-556
    • /
    • 2001
  • The filling pattern technique based on the finite element method and Eulerian mesh advancement approach has been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The penalty and predictor-corrector methods are used effectively for finite element formulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among four filling patterns at each triangular control volume. Using the proposed numerical technique, the collapse of a dam has been analyzed to predict flow phenomenon of fluid and the predicted front positions versus time have been compared with the reported experimental result.

  • PDF

A fast capacitance extraction algorithm for multiple 3-dimensional conductors with dielectrics using adaptive triangular mesh (적응요소 MLFMA를 이용한 유전체가 포함된 3차원 구조의 정전용량계산)

  • Kim, Han;Ahn, Chang-Hoi
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.140-144
    • /
    • 2001
  • This paper describes to extend the MLFMA(Multi-Level Fast Multipole Algorithm) for three-dimensional capacitance computation in the case of conductors embedded in an arbitrary dielectric medium. The triangular meshes are used and refined in the area which has heavy charge density. This technique is applied to the capacitance extraction of three-dimensional structures with multiple dielectrics. The results show good convergence with the comparable accuracy, and this adaptive technique coupled with MLFMA is useful to reduce computing time and the number of elements without additional computational efforts in large three dimensional problems.

  • PDF