Browse > Article
http://dx.doi.org/10.12652/Ksce.2019.39.2.0247

Two-Dimensional(2-D) Flood Inundation Modeling Considering Mesh Type and Resolution  

Kim, Byunghyun (Ministry of the Interior and Safety)
Publication Information
KSCE Journal of Civil and Environmental Engineering Research / v.39, no.2, 2019 , pp. 247-256 More about this Journal
Abstract
In this study, 2-D Godunov type finite volume model which can apply the mixed mesh including triangular and quadrilateral meshes for flood inundation modeling is used to compare and analyze the flood height, flood extent and model execution time according to mesh type and resolution. The study area is the Upton-upon Severn watershed in Great Britain, where the flood occurred for 22 days from October 29 to November 19, 2000. For the flood modeling, topographic data were constructed using high resolution LiDAR (Light Detection And Ranging). The results of the 2-D flood modeling by the mesh type and resolution were compared with four ASAR (Airborne Synthetic Aperture Radar) images captured during the flood period. This study has shown that flood height and extent can vary greatly depending on the mesh type and resolution, even if identical topography and boundary conditions are used, and that the selection of appropriate mesh type and resolution for the purpose and situation of the 2-D flood modeling is necessary.
Keywords
Mesh type; Mesh resolution; ASAR; 2-D flood modeling; Finite volume model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abderrezzak, K. E., Paquier, A. and Mignot, E. (2009). "Modelling flash flood propagation in urban areas using a two-dimensional numerical model." Natural Hazards, Vol. 50, pp. 433-460.   DOI
2 Aizinger, V. and Dawson, C. (2002). "A discontinuous Galerkin method for two-dimensional flow and transport in shallow water." Adv. Water Resour., Vol. 25, No. 1, pp. 67-84.   DOI
3 Bates, P. D., Wilson, M. D., Horritt, M. S., Mason, D., Holden, N. and Currie, A. (2006). "Reach scale floodplain inundation dynamics observed using airborne Synthetic Aperture Radar imagery: data analysis and modeling." Journal Hydrol., Vol. 328, pp. 306-318.   DOI
4 Begnudelli, L. and Sanders, B. F. (2007). "Conservative wetting and drying methodology for quadrilateral grid finite-volume models." Journal Hydraul. Eng., Vol. 133, No. 3, pp. 312-322.   DOI
5 Begnudelli, L., Sanders, B. F. and Bradford, S. F. (2008). "An adaptive Godunov-based model for flood simulation." Journal Hydraul. Eng., Vol. 134, No. 6, pp. 714-725.   DOI
6 Causon, D. M., Ingram, D. M., Mingham, C. G., Yang, G. and Pearson, R. V. (2000). "Calculation of shallow water flows using a Cartesian cut cell approach." Adv. Water Resour., Vol. 23, No. 5. pp. 545-562.   DOI
7 Cea, L. and Vazquez-Cendon, M. E. (2010). "Unstructured finite volume discretization of two dimensional depth-averaged shallow water equations with porosity." Int. Journal Num. Meth. Fluid., Vol. 63, pp. 903-930.   DOI
8 Chow, V. T. (1973). Open-channel hydraulics. International ed. Singapore: McGraw-Hill.
9 Ern, A., Piperno, S. and Djadel, K. (2008). "A well-balanced Runga-Kutta discontinuous Galerkin method for shallow-water equations with flooding and drying." Int. Journal Num. Meth. Fluid., Vol. 58, No. 1, pp. 1-25.   DOI
10 Engman, E. T. (1996). "Roughness coefficients for routing surface runoff." Journal Irrig. Drain. Eng., Vol. 112, No. 1, pp. 39-53.   DOI
11 Ernst, J., Dewals, B. J., Detrembleur, S., Archambeau, P., Erpicum, S. and Pirotton, M. (2010). "Micro-scale flood risk analysis based on detailed 2D hydraulic modelling and high resolution geographic data." Nat. Hazards, Vol. 55, pp. 181-209.   DOI
12 Guinot, V. (2003). Godunov-type Schemes (An introduction for engineers). Elsevier Science, p. 508.
13 Gallegos, H. A., Schubert, J. E. and Sanders, B. F. (2012). "Structural damage prediction in a high-velocity urban dam-break flood: field-scale assessment of predictive skill." Journal Engineering Mechanics, Vol. 138, No. 10, pp. 1249-1262.   DOI
14 Gallien, T. W., Schubert, J. E. and Sanders, B. F. (2011). "Predicting tidal flooding of urbanized embayments: a modeling framework and data requirements." Coastal Eng., Vol. 58, pp. 567-77.   DOI
15 George, D. L. (2010). "Adaptive finite volume methods with wellbalanced riemann solvers for modeling floods in rugged terrain: application to the malpasset dam-break flood (France, 1959)." Int. Journal Numer. Meth. Fluids, Vol. 66, No. 8, pp. 1000-1018.   DOI
16 Kim, B. and Sanders, B. F. (2016). "Dam-break flood model uncertainty assessment: a case study of extreme flooding with multiple dam failures in Gangneung, South Korea." Journal Hydraul. Eng.-ASCE, Vol. 142, No. 5. pp. 1-18.
17 Horritt, M. S., Di Baldassarre, G., Bates, P. D. and Brath, A. (2007). "Comparing the performance of a 2-D finite element and a 2-D finite volume model of floodplain inundation using airborne SAR imagery." Hydrol. Process., Vol. 21, No. 20, pp. 2745-2759.   DOI
18 Kelman, I. and Spence, R. (2003). "A flood failure flowchart for buildings." Proc. Inst. Civ. Eng.-Municipal Engineer. Vol. 156, No. 3, pp. 207-214.
19 Kesserwani, G. and Liang, Q. H. (2012). "Dynamically adaptive grid based discontinuous Galerkin shallow water model." Adv. Water Resour., Vol. 37, pp. 23-39.   DOI
20 Kim, B., Sanders, B. F., Schubert, J. E. and Famiglietti, J. S. (2014). "Mesh type tradeoffs in 2D hydrodynamic modeling of flooding with a Godunov-based flow solver." Adv. Water Resour., Vol. 68, pp. 42-61.   DOI
21 Munson, B. R., Young, D. F. and Okiishi, T. H. (2006). Fundamentals of fluid mechanics, 5th ed., John Wiley & Sons, p. 769.
22 Kim, D. H., Lynett, P. J. and Socolofsky, S. A. (2009). "A depthintegrated model for weakly dispersive, turbulent, and rotational fluid flows." Ocean Modelling. Vol. 27, No. 3-4, pp. 198-214.   DOI
23 Kim, B., Sanders, B. F., Famiglietti, J. S. and Guinot, V. (2015). "Urban flood modeling with porous shallow-water equations: A case study of model errors in the presence of anisotropic porosity." Journal Hydrol., Vol. 523, pp. 680-692.   DOI
24 Kreibich, H., Piroth, K., Seifert, I., Maiwald, H., Kunert, U., Schwarz, J., Merz, B. and Thieke, A. H. (2009). "Is flow velocity a significant parameter in flood damage modelling?" Nat. Hazards Earth Syst. Sci., Vol. 9, pp. 1679-1692.   DOI
25 Kuiry, S. N., Sen, D. and Bates, P. D. (2010). "Coupled 1D-Quasi-2D Flood Inundation Model with Unstructured Grids." Journal Hydraul. Eng. Vol. 136, No. 8, pp. 493-506.   DOI
26 Liao, C. B., Wu, M. S. and Liang, S. J. (2007). "Numerical simulation of a dam break for an actual river terrain environment." Hyd. Proc., Vol. 21, No. 4, pp. 447-460.   DOI
27 Neelz, S., Pender, G., Villanueva, I., Wilson, M., Wright, N. G., Bates, P., Mason, D. and Withlow, C. (2006). "Using remotely sensed data to support flood modelling." Proc. Inst. Civ. Eng. -Water Manag., Vol. 159, No. 1, pp. 35-43.   DOI
28 Schubert, J. E. (2009). Landscape Characterization for Flood Inundation Modelling [dissertation]. Nottingham: University of Nottingham.
29 Schubert, J. E., Sanders, B. F., Smith, M. J. and Wright, N. G. (2008). "Unstructured mesh generation and landcover-based resistance for hydrodynamic modeling of urban flooding." Adv. Water Resour., Vol. 31, pp. 1603-1621.   DOI
30 Singh, J., Altinakar, M. S. and Ding, Y. (2011). "Two-dimensional numerical modeling of dambreak flows over natural terrain using a central explicit scheme." Adv. Water Resour. Vol. 34, No. 10, pp. 1366-1375.   DOI
31 Woolhiser, D. A., Smith, R. E. and Goodrich, D. C. (1990). KINEROS, A Kinematic Runoff and Erosion Model: Documentation and User Manual. No. 77, ARS-Publication, USDA-ARS, Tucson, Ariz.
32 Testa, G., Zuccala, D., Alcrudo, F., Mulet, J. and Soares-Frazao, S. (2007). "Flash flood flow experiment in a simplified urban district." Journal Hydraul. Res., Vol. 45(Extra Issue), pp. 37-44.   DOI
33 Toro, E. F. (2001). Shock-capturing methods for free-surface shallow flows. John Wiley & Sons, Chichester, UK, p. 309.
34 Wang, Y., Liang, Q., Kesserwani, G. and Hall, J. W. (2011). "A 2D shallow-water model for practical dam-break simulations." Journal Hydraul. Res. Vol. 49, No. 3, pp. 307-316.   DOI
35 Wright, N. G., Villanueva, I., Bates, P. D., Mason, D. C., Wilson, M. D., Pender, G. and Neelz, S. (2008). "Case study of the use of remotely sensed data for modeling flood inundation on the river Severn, U.K." Journal Hydraul. Eng. Vol. 134, No. 5, pp. 533-540   DOI