• 제목/요약/키워드: triangles and quadrilaterals

검색결과 7건 처리시간 0.02초

초등학교 수학 교과서에 나타난 삼각형과 사각형의 넓이 지도 방법에 대한 분석 (An Analysis of Teaching Areas of Triangles and Quadrilaterals in Elementary School Mathematics Textbooks)

  • 김신영;강완
    • 한국초등수학교육학회지
    • /
    • 제9권2호
    • /
    • pp.161-180
    • /
    • 2005
  • 제7차 수학과 교육과정의 6개 영역 중 측정 영역은 수학의 실용적 가치의 측면에서 강조되고 있다. 이 중 삼각형과 사각형의 넓이 지도는 통합적인 수학적 능력이 요구되고, 측정 영역의 후속 단계 학습의 기초가 되므로 중요한 교수학적 의미를 가진다. 따라서 본 연구에서는 우리나라 제1차 교육과정에서부터 제7차 교육과정에 따른 초등학교 수학 교과서에 나타난 삼각형과 사각형의 넓이 지도 방법을 (1) 넓이의 개념과 (2) 삼각형과 사각형의 넓이 공식으로 나누어 범주를 구성하고, 지도시기 및 지도 순서와 지도 방법을 교수학적 변환의 관점에서 분석하였다.

  • PDF

기하 증명 구성에 나타나는 학생들의 사고과정 탐색 (Exploring students' thinking in proof production in geometry)

  • 안선영;김구연
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제53권3호
    • /
    • pp.383-397
    • /
    • 2014
  • This study aims to explore secondary students' thinking while doing proof in geometry. Two secondary students were interviewed and the interview data were analyzed. The results of the analysis suggest that the two students similarly showed as follows: a) tendencies to use the rules of congruent and similar triangles to solve a given problem, b) being confused about the rules of similar and congruent triangles, and c) being confused about the definitions, partition and hierarchical classification of quadrilaterals. Also, the results revealed that a relatively low achieving student has tendency to rely on intuitive information such as visual representations.

피타고라스의 정리 III : 등각사각형의 관점에서 (Pythagorean Theorem III : From the perspective of equiangular quadrilaterals)

  • 조경희
    • 한국수학사학회지
    • /
    • 제33권3호
    • /
    • pp.155-165
    • /
    • 2020
  • Pythagorean theorem is a proposition on the relationship between the lengths of three sides of a right triangle. It is well known that Pythagorean theorem for Euclidean geometry deforms into an interesting form in non-Euclidean geometry. In this paper, we investigate a new perspective that replaces right triangles with 'proper triangles' so that Pythagorean theorem extends to non-Euclidean geometries without any modification. This is seen from the perspective that a rectangle is an equiangular quadrilateral, and a right triangle is a half of a rectangle. Surprisingly, a proper triangle (defined by Paolo Maraner), which is a half of an equiangular quadrilateral, satisfies Pythagorean theorem in many geometries, including hyperbolic geometry and spherical geometry.

Global van Hiele (GVH) Questionnaire as a Tool for Mapping Knowledge and Understanding of Plane and Solid Geometry

  • Patkin, Dorit
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제18권2호
    • /
    • pp.103-128
    • /
    • 2014
  • This paper presents the Global van Hiele (GVH) questionnaire as a tool for mapping knowledge and understanding of plane and solid geometry. The questionnaire facilitates identification of the respondents' mastery of the first three levels of thinking according to van Hiele theory with regard to key geometrical topics. Teacher-educators can apply this questionnaire for checking preliminary knowledge of mathematics teaching candidates or pre-service teachers. Moreover, it can be used when planning a course or granting exemption from studying in basic geometry courses. The questionnaire can also serve high school mathematics teachers who are interested in exposing their students to multiple-choice questions in geometry.

Multi-material polygonal topology optimization for functionally graded isotropic and incompressible linear elastic structures

  • Thanh T. Banh;Joowon Kang;Soomi Shin;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • 제51권3호
    • /
    • pp.261-270
    • /
    • 2024
  • This paper proposes an effective method for optimizing the structure of functionally graded isotropic and incompressible linear elastic materials. The main emphasis is on utilizing a specialized polytopal composite finite element (PCE) technique capable of handling a broad range of materials, addressing common volumetric locking issues found in nearly incompressible substances. Additionally, it employs a continuum model for bi-directional functionally graded (BFG) material properties, amalgamating these aspects into a unified property function. This study thus provides an innovative approach that tackles diverse material challenges, accommodating various elemental shapes like triangles, quadrilaterals, and polygons across compressible and nearly incompressible material properties. The paper thoroughly details the mathematical formulations for optimizing the topology of BFG structures with various materials. Finally, it showcases the effectiveness and efficiency of the proposed method through numerous numerical examples.

MIXED FINITE VOLUME METHOD ON NON-STAGGERED GRIDS FOR THE SIGNORINI PROBLEM

  • Kim, Kwang-Yeon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제12권4호
    • /
    • pp.249-260
    • /
    • 2008
  • In this work we propose a mixed finite volume method for the Signorini problem which are based on the idea of Keller's finite volume box method. The triangulation may consist of both triangles and quadrilaterals. We choose the first-order nonconforming space for the scalar approximation and the lowest-order Raviart-Thomas vector space for the vector approximation. It will be shown that our mixed finite volume method is equivalent to the standard nonconforming finite element method for the scalar variable with a slightly modified right-hand side, which are crucially used in a priori error analysis.

  • PDF

Automatic Conversion of Triangular Meshes Into Quadrilateral Meshes with Directionality

  • Itoh, Takayuki;Shimada, Kenji
    • International Journal of CAD/CAM
    • /
    • 제1권1호
    • /
    • pp.11-21
    • /
    • 2002
  • This paper presents a triangular-to-quadrilateral mesh conversion method that can control the directionality of the output quadrilateral mesh according to a user-specified vector field. Given a triangular mesh and a vector field, the method first scores all possible quadrilaterals that can be formed by pairs of adjacent triangles, according to their shape and directionality. It then converts the pairs into quadrilateral elements in order of the scores to form a quadrilateral mesh. Engineering analyses with finite element methods occasionally require a quadrilateral mesh well aligned along the boundary geometry or the directionality of some physical phenomena, such as in the directions of a streamline, shock boundary, or force propagation vectors. The mesh conversion method can control the mesh directionality according to any desired vector fields, and the method can be used with any existing triangular mesh generators.