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Abstract 一 This paper presents a triangular-to-quadrilateral mesh conversion method that can control the directionality of the 
output quadrilateral mesh according to a user-specified vector field. Given a triangular mesh and a vector field, the method 
first scores all possible quadrilaterals that can be formed by pairs of adjacent triangles, according to their shape and 
directionality. It then converts the pairs into quadrilateral elements in order of the scores to form a quadrilateral mesh. 
Engineering analyses with finite element methods occasionally require a quadrilateral mesh well aligned along the boundary 
geometry or the directionality of some physical phenomena, such as in the directions of a streamline, shock boundary, or force 
propagation vectors. The mesh conversion method can control the mesh directionality according to any desired vector fields, 
and the method can be used with any existing triangular mesh generators.
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1. Introduction

In some types of finite element method (FEM) 
analyses, such as sheet-metal forming simulations and 
automobile crash simulations, quadrilateral meshes are 
preferable to triangular meshes because they produce 
more accurate res나Its more efficiently. Such engineering 
analyses occasionally require a quadrilateral mesh well 
aligned along the boundary geometry or the directionality 
of some physical phenomena, such as along the directions 
of a streamline, shock bo니ndary, or force propagation 
vectors.

Although there are many approaches to generating 
quadrilateral meshes, their capabilities of controlling 
the mesh directionality are quite limited. The existi다g 
quadrilateral meshing approaches include: template 
matching [1], medial-axis-based decomposition [2], quad­
tree decomposition [3-5], advancing front [6-10], and 
triangular-to-quadrilateral mesh conversion [11-21]. In 
this paper we focus on the triangle-to-quadrilateral mesh 
conversion methods, which take advantage of the benefits 
of triangular mesh generation: (1) a fully-automated 
meshing process, (2) flexible control of element sizes, 
and (3) less computation time than the advancing front 
method. The advancing front methods [6-10] and the 
triangular-to-quadrilateral mesh conversion methods [18- 
20] control mesh directionality, but based only on the 
domain boundary; they cannot create a quadrilateral 
mesh that aligns well with an arbitrary vector field
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given by the user.
In this paper we propose a triangular-to-quadrilateral 

mesh conversion scheme that can control the mesh 
directionality of an output quadrilateral mesh accurately 
based on a user-specified vector field. Given a triangular 
mesh and a vector field, the method generates a 
quadrilateral mesh. It first scores the geometric irregularity 
and the directionality error of the quadrilaterals formed 
by all possible pairs of adjacent triangular elements in 
the i다put mesh. It then converts pairs of adjacent 
triangular elements into quadrilateral elements according 
to the weighted sum of the shape irregularity and the 
directionality error. The proposed conversion method 
can be used with any existing triangular mesh generators.

The remainder of the paper is organized as follows. 
After reviewing previous mesh conversion methods in 
Section 2, we describe data structures for triangular 
meshes and vector fields in Section 3. We then describe 
the algorithm of our mesh conversion method in Section 
4. After discussing our results in Section 5, we offer 
some conclusions in Section 6.

2. Previous Work

Given a triangular mesh, existing triangular-to- 
quadrilateral mesh conversion methods [11-21] join 
pairs of adjacent triangular elements selectively and then 
convert the pairs into quadrilateral elements. The quality 
of the o나tput quadrilateral mesh strongly depends on 
which pairs of triangular elements are joined. The 
shapes of the quadrilateral elements and the number of 
triangular elements left in quad-dominant meshes strongly 
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depend on this selection of triangular pairs.
One of the goals of triangular-to-quadrilateral mesh 

conversion is to maximize the number of triangular 
pairs. This problem is called maximum matching in graph 
theory, and there are algorithms available for solving 
this problem. Suppose the connectivity of input triangular 
elements is interpreted as an undirected weighted graph, 
the graph nodes represent triangular mesh elements, 
and graph edges represent connectivity between mesh 
elements. Preferable quadrilateral meshes can be obtained 
by applying a maximum matching algorithm to non- 
bipartite graphs. This process, however, is computationally 
expensive, and it does not necessarily create a quad­
dominant mesh suitable for engineering analysis. Another 
approach to solving the mesh conversion problem is to 
apply integer programming [21], which is 시so com­
putationally expensive. In most cases a quadrilateral 
mesh of sufficient quality for engineering analysis can 
be generated without performing maximum matching 
or integer programming, as can be seen in many 
previously proposed mesh conversion methods.

In the rest of this section we survey and categorize 
previous mesh conversion methods. Note that the 
common shortfall of these methods is limited control 
over mesh directionality. Some of the methods can 
align an output mesh along the domain boundaries, but 
none can realize a user-defined arbitrary directionality.

2.1. Conversion methods that minimize the 
number of triangular elements

The methods in this category [11-12] count the 
number of unprocessed adjacent triangles for each 
triangle and mark those that have only one unprocessed 
adjacent triangle as high-priority triangles. These triangles 
are then extracted and converted into quadrilateral 
elements with their adjacent trian이es. The adjacency of 
trian읺es is dynamically updated during the conversion 
process, and many triangles are therefore marked as 
high-priority triangles during the process. Finally, many 
of the marked triangles are converted into quadrilateral 
elements yielding a quad-dominant mesh.

Since the goal of these methods is to generate all­
quadrilateral meshes, they also include post-processing 
for converting isolated triangles. Heighway [11] proposes 
a method that swaps the edges of quadrilaterals lying 
between two isolated trian이es until the two triangles 
become adjacent, as if the two triangles 'walk' toward 
each other. Johnston et al, [12] describe a method that 
subdivides or swaps edges of isolated triangles until they 
are locally converted into all-quadrilateral elements.

2.2. Conversion methods that minimize geometric 
irregularities

The methods in this category [13-17] first calculate 
the values of a scalar function representing the shapes 
of the quadrilaterals generated by all possible pairs of 
adjacent triangular elements. They then convert the 

triangle pairs into quadrilateral elements in order of the 
values of this function.

Various functions can be used to evaluate quadrilateral 
shapes. Lo et al. [13] propose an evaluation function 
defined by the ratio between the shape evaluation 
values of the four possible triangles generated by dividing 
the quadrilateral by its two diagonals. Borouchaki et al. 
[17] propose an evaluation function based on the angles 
of the four vertices of each q니adrilateraL

2.3. Advancing front-like conversion methods
In many cases, elements along the domain boundary 

are the most critical in engineering analysis. Therefore, 
it is often desirable that elements are well aligned along 
the domain boundary. Quadrilateral meshes with such 
well-aligned boundary elements can be generated via 
triangular-to-quadrilateral mesh conversion by coupling 
triangles of the input mesh along the domain boundary 
first.

Shimada et al. [20] devised a method that first clusters 
the input triangular mesh into layered sub-domains along 
the domain boundary, and then couples the triangles in 
each cluster. The method generates a topologically regular 
mesh, and the mesh elements5 shapes can be improved 
by a smoothing process.

Owen et al. [18-19] propose the 'Q-Morph' method, 
which visits front of an input triangular mesh in order 
and forms quadrilaterals along the visited front edges 
by re-connecting some edges around the visited front 
edges. This method generates a high quality quadrilateral 
mesh well aligned along the domain boundary, similar 
to a mesh generated by the advancing front method.

3. Preliminaries

In this section we define the data structures for the 
inputs of the proposed mesh conversion method: a 
triangular mesh and a desired mesh directionality.

3.1. Data structure of a triangular mesh
We represent a triangular mesh, as a planar graph,

M.= (V,T, 3T, (1)

consisting of four ordered lists of:

(1) nodes, V=(vu..., V/),
(2) triangular elements, T=(rb..., r„),
(3) element boundaries, dT=(dtlydtn), which 

defines the three surrounding nodes of each 
triangle, and

(4) adjacent elements,厶...*応)，which gives 
at most three adjacent triangles for each triangle.

V and T are topological entities in a triangular mesh, 
and dT and AT give topological connections between 
topological entities. The i th element of <97^ denoted as 
dth represents the counter-clockwise ordered list of the 
nodes surrounding the i th triangle 尔 Similarly, the i th



Takayuki Itoh and Kenji Shimada Automatic Conversion of Triangular Meshes Into Quadrilateral Meshes with Directionality 13

(b) triangle adjacency.(a) nodes and triangles. (c) removal of triangle 
adjacency.

Fig. 1. Triangular mesh representation.

element of the list AT, denoted as Ath represents the 
counter-clockwise ordered list of the triangles adjacent 
to the i th triangle The notation Aty represents the j th 
adjacent triangle of z%. The number of adjacent triangles 
of ti is denoted by \Ati\.

For example, the representation of the triangular mesh 
shown in Fig. 1(a) is:

v2, v3,卩4, v5), (Zi, M t3), (2)
((Vl,卩2, 1勺),)(巧，V4, v3), (v2, v5, V4)),
((©, 0 0),(奴 0, G，(。，0,先)))，

where (p in AT means that there is no triangle adjacent 
to a given side. In this example, as implied by the 
expression 剛=(0 ?2, 0), the triangle ti has only one 
adjacent triangle 丘，so the number of adjacent triangles 
is one, or 121^1=1.

In the mesh conversion algorithms given in this paper, 
adjacencies between triangles are selectively deleted in 
order to make pairs of triangles. Fig. 1(a) shows an 
example of nodes and triangles in a mesh, and Fig. 1(b) 
shows its adjacencies. Tb delete the adjacency between 
h and t3 in Fig. 1(b), At2\ and At33 are set to 0, yielding 
a new element adjacency,

△T=((0 t2, 0), (©, e，?1), (0, 0, 0)) (3)

as shown in Fig. 1(c).
Our mesh conversion method couples adjacent 

triangles, " and 弓，while deleting the adjacency between 
ti (or tj) and its other adjacent triangular elements. The 
coupling process is repeated until no triangle has an 
adjacency with more than one other triangular element. 
Edges shared by each pair of triangles are then deleted, 
and finally a quad-dominant mesh is generated.

Fig. 2. Quad-dominant to all-quad mesh conversion.

Although the quad-dominant mesh generated by this 
mesh conversion method contains a small number of 
triangular elements, it can be converted into an all­
quadrilateral mesh by dividing each remaining triangle 
into three quadrilaterals and dividing each quadrilateral 
into four q나adrilaterals, by adding an inside node for 
each triangle and by dividing all the edges in two for 
both triangles and quadrilaterals, as shown in Fig. 2.

3.2. Data structure for desired mesh directionality
One of the inputs of our method is a vector field that 

represents the user's preferences for mesh directionality. 
A simple way to represent a vector field is to use a grid 
so that at each grid-point a vector value is defined. In 
this paper we assume that the vector field is given as a 
two-dimensional grid, G, represented as:

G“Pg, Dg) (4)

consisting of two ordered lists of:

(1) grid-points, Fg=((Pi,i,…,P成),•,…,(l슈,i,…,卩时)), and
(2) vector values,

As 아lown in Fig. 3, the grid G has (m-l)X (zi-l) cells 
and m~x n grid-points. The vector value, d, at an 
arbitrary point, p, can be calculated by the following 

Fig. 3. A 2D grid representing a vector field, and the calculation of a vector value at an arbitrary point.
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bi-linear interpolation of vector values assigned to the 
grid-points:

d($,沪(l-s)((lT)djj+/dw+i))+s((l-f)d(j+i)j+7d(E),(/+i))
(5)

where (s.t) is the parametric coordinate of point p 
calculated by projecting a cell that contains point p.

4. Mesh Conversion with Directionality

This section describes the algorithm of our mesh 
conversion method. Given a triangular mesh, Mt, and 
desired mesh directionality, G, the method first scores 
the shapes and directionality of all the possible 
quadrilaterals that can be generated by combining pairs 
of adjacent triangles. The method then converts the 
pairs of trian읺es to quadrilateral elements in order of 
their scores.

Sections 4.1 and 4.2 describe the following two 
scalar functions used to score a quadrilateral,

(1) £gi for evaluating the geometric irregularity of 
the i th quadrilateral, qh formed by coupling two 
adjacent triangles, and

(2) £di for evaluating the directionality error of the i 
th quadrilateral, %

We then describe the algorithm to pair triangles in an 
input mesh in Section 4.3. We also describe the 
algorithm to generate a vector field from a set of input 
vector values in Section 4.4. In the rest of this paper we 
represent all possible quadrilaterals formed by joining 
two adjacent triangular elements and the directions of 
the edges of the quadrilaterals as the following ordered 
lists of:

(1) quadrilaterals, Q=(q、,…,q" and
(2) directions of the q니adrilaterals' edges, E=((eM,

4,3,。1,4),…，(為為i,斜淳，e払3, e〃,4)).

4.1. Scalar ftinction 与 for measuring the geometric 
irregularity of quadrilaterals

In order to measure the geometric irregularity of the i th 
quadrilateral, qh we define the following scalar function:

标=1顼会. (6)

Here, as shown in Fig. 4, r; is the radius of the 

minimum inscribed circle, the smallest circle tangent to 
at least three edges of an element, and R is the radius 
of the maximum circumcircle, the largest circle that 
goes through at least three vertices of qi，The radius 
ratio of the two circles, rt/Rh takes its maximum value 
lZ/2 for a square, and minimum value 0 for a highly 

irregular quadrilateral. Therefore, the value of £gi is 0 in 
the best case, and 1 in the worst case.

4.2. Scalar function & for measuring the 
directionality error of quadrilaterals

In order to measure the directionality error of the i th 
quadrilateral, qh we define the following scalar function:

% = 프业啤牛以의纠(7)

I 4 念 led

As also shown in Fig. 5, d; denotes the unit vector 
obtained from the input vector field at the center of 
the quadrilateral element, and N denotes the unit 
normal vector of the quadrilateral element. The value 

le以・(NX djl} takes its maximum value 
1 for an edge perfectly aligned along the given vector, 
and minimum value lA/2 when the edge and the 
desired direction form an angle of 45 degrees. Therefore, 
the value of edi is 0 in the best case, and 1 in the worst 
case.

4.3. Coupling of triangle pairs to form 
quadrilaterals

Two previous sections defined two scalar functions, 
£gi and %, that measure the geometric irregularity and 
directionality error, respectively. By taking a weighted 
sum of these two functions, we define the following 
metric, that decides the order of coupling triangles:

&=(12)珀+시* (8)
0<a< 1

where tz is a user-defined weighting factor representing 
the relative importance of the two measurements. Lower 
values of a give greater importance to shape regularity than 
directionality. Values of & for all possible quadrilaterals 
are first calculated in our algorithm, since they do not 
change during the entire coupling process. All possible 
quadrilaterals are then inserted into a list, L, and sorted

Fig. 4. Function for evaluating the geometric irregularity of a 
quadrilateral.

Fig. 5. Function for evaluating the directionality error of a 
quadrilateral.
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MeshConversion( M, , G ) {

/* Score all possible quadrilaterals */ 
for( all ti G T ) {

for( all tj e M ) {
form q from J and tj ;
if(募 L ) {

calculate the value e of g ;
insert q into L;

}
} /* end for( all 匕 e M ) */

} /* end for( all G T ) */ 
sort Q m L £ values;

/* Make pairs of triangles */
while( L is not empty ) {

extract an quadrilateral q that has
the smallest e value from L;

suppose two triangles forming q 
as ti and t ;

if( t曰뇨continue;

Fig. 6. Pseudo code for the mesh conversion method.

for( all tk e A外){

if( tk=tj) continue;
delete adjacency between /,■ and tk;

1
for( all tk g ) (

if( tk = z,) continue;
delete adjacency between and tk;

}
) /* end while( L is not empty ) */

/* Form quadrilateral elements */
for( all tj e T ) (

for( one tj e A/.) {
delete the edge shared 

by ti and ;
}

}

} /* end MeshConversion() */

by their & values.
The quadrilaterals are then extracted from list L in 

the order of their & values. Suppose two triangles, ta 
and 访，form an extracted quadrilateral, ta and 访's other 
adjacencies need to be deleted. This process is repeated 
until the list L becomes empty, and finally no triangle has 
an adjacency with more than one other triangular 
element. Edges shared by each pair of triangles are then 
deleted to form a quad-dominant mesh. The complete 
procedure for the above algorithm is given in Fig. 6.

Although an output quad-dominant mesh generated 
by the above algorithm still contains a small number of 
triangular elements, the mesh can be converted into an 
all-quadrilateral mesh by applyin응 the templates shown 
in Fig. 2.

4.4. Automated vector field generation
Although the mesh conversion algorithm described in 

the previous section req나ires a desired mesh directionality 
as a vector field, this vector field need not be provided 
by the user at all, or it may be provided at only a set of 
selected locations in the mesh domain. This section 
describes a method for generating a vector field 
automatic시ly in these situations.

Suppose that desired mesh directionality is provided 
by the user as vector values at a set of points in the 
mesh domain. We denote these points and vector values 
as:

(1) points, PP=(pi,...,p;), and
(2) \ector values, D尸=(di,...,山)，

where I is the number of the given points at which the 

desired mesh directionality is specified.
Our implementation assigns vector values to the grid­

points of grid G to represent a vector field defined over 
the entire mesh domain and well aligned along the 
vector values Dp. We calculate a vector value,虬,that 
is the vector value at a grid-point, gzj, of a two- 
dimensional grid using the following formula:

Z= 頒-보 (9)

where d* is the given unit vector at point p&, and 勺& is 
the vector from point p* to grid-point 嵐,as shown in 
Fig. 7(a). Fig. 7(b) shows an example of a set of input 
vector vahies, and Fig. 7(c) shows a complete vector 
field calculated from the set of input vector values.

This vector averaging technique works best when the 
input vectors are evenly spaced. When a region has 
many inp니t vectors clustered together, they tend to 
outweigh other input vectors. This problem can be 
avoided by limitin용 the maximum number of vectors 
used in a local region.

If it is desirable that the elements be well aligned 
along the domain boundary, like meshes 용egated by 
the advancing front method, our mesh conversion method 
can generate such meshes by automatically generating 
a vector field along the domain boundary using the 
same method described above. To generate such a vector 
field we take a set of points on the domain boundary 
and assign vector values at these points according to 
the boundary direction.
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(a) assignment of vector values from arbitrary points to fixedgrid-points

(c) output: generated vector field(b) input: a set of jx)ints and vector values

Fig. 7. Calculation of a vector field from a set of vector values.

5. Res미ts

The new mesh conversion method was implemented 
in C++ on Unix Workstations (IBM AIX 4.3.2 and SGI 
IRIX 6.2) and on Windows NT/95/98 PCs.

In order to evaluate the quality of the meshes generated 
by our conversion algorithm, we define topological 
irregularity,品 in addition to the geometric irregularity, 
电 and directionality error, ed, as defined in Section 4.

We measure the overall geometric irregularity of an 
output quadrilateral mesh by taking the average of the 
geometric irregularity of each element,臥 as defined 
in Section 4.1:

1 m
电 (io)

where m is the number of quadrilateral elements. Since 
the value egi takes its minimum val니© 0 for a square 
element, a smaller value 야f 耳 indicates a more 
geometrically regular mesh.

We measure the overall directionality error of an 
output quadrilateral mesh by taking the average of the 
directionality error of each element, £di, as defined in 
Section 4.2:

I m
弓产折#di (11)

i=0

Because the value % takes its minimum value 0 for 

an element perfectly aligned along a given vector field, 
a smaller value of 瓦 indicates a better-aligned mesh.

For topological irregularity, we define the following 
metric:

1 n
耳=丄£伽厂어 (12)

ni=o

where D=4 for the internal nodes of a quadrilateral 
mesh, D=2 for the boundary nodes of a quadrilateral 
mesh, n denotes the number of nodes, and denotes 
the number of nodes adjacent to i th node vz. The 
topological irregularity et has a positive value that 
measures how much the mesh differs topologically 
from a perfectly structured grid mesh. The smaller the 
value of £, the more regular the mesh.

Ouq)ut quadrilateral meshes differ drastically defending 
on the input directionality. Fig. 8 shows an example of 
an input triangular mesh, three different vector fields, 
the output quad-dominant meshes, the smoothed output 
quad-dominant meshes, and die smoothed all-quadrilaterrf 
meshes. Mesh smoothing is performed by standard 
Laplacian smoothing, which moves each node to the 
center of its surrounding nodes. As shown in the left­
hand images of Fig. 8, given a directionality along the 
domain boundary, the method generates a quadrilateral 
mesh well-aligned along the domain boundary. As 
shown in the center images of Fig. 8, given a uniform 
directionality, the method generates a quadrilateral mesh 
aligned in one direction. As shown in the right-hand 
images of Fig. 8, given variations in directionality, the
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(b) three different input vector fields.

(c) output quad-dominant meshes.

(d) smoothed output quad-dominant meshes.

(e) smoothed output all-quadrilateral meshes.

Fig. 8. Output quadrilateral meshes are well-aligned along the input mesh directionality.

method generates a quadrilateral mesh that aligns along 
the various directions.

The output quadrilateral meshes also vary greatly 
depending on the value of the weighting coefficient 
controlling element shape regularity and directionality. 
Fig. 9 shows an example of an input mesh, an input 
vector field, and the different smoothed o나tput quad­
rilateral meshes generated while varying the coefficient 
value. Table 1 shows the selected coefficient values and 
the resulting irregularity vahies. Smaller a values produce 
the smaller 弓 values, denoting a well-shaped mesh. 
Larger a values result in the smaller 爲 values, indicating 

a well-aligned mesh.
The output quadrilateral meshes also diverge depending 

on the input meshes. Fig. 10(a) and 10(b) show an 
example of two input triangular meshes that have exactly 
the same domain boundaries and the same vector field, 
but the two smoothed output all-quadrilateral meshes 
are distinct due to the different meshing patterns of the 
input triangular meshes. Figs. 10(c) and 10(d) show a 
similar example. Table 2 shows the irregularity values 
of the output meshes. Note that the domain boundaries, 
vector fields, and coefficient value are all identical 
between Fig. 10(a) and Fig. 10(b). Only the input
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(b) input vector field.(a) input triangular mesh.

(c) output mesh (1) (a = 0.0). (d) output mesh (2) (a = 0.3).

(e) output mesh (3) (a = 0.6),

Fig. 9. Output quadrilateral meshes vary according to the coefficient value.

(f) output mesh (4) (a = 1.0 ).

Ihble 1. Coefficient values and irregularity values of meshes in 
Fig. 9

Coefficient 퉇ahie 乌 歸 私

Mesh (1) a=0.0 0.04932 0.34012 0.28322
Mesh (2) a=03 0.05285 0.27340 0.26224
Mesh (3) a=0.6 0.07028 0.22332 0,26923
Mesh (4) a=1.0 0.07682 0.20796 0,28322

Thble 2. Coefficient values and irregularity values of meshes in 
Fig. 10.

ce^fficient value 耳 百 耳

Mesh(lA) i/=0.5 0.07504 0.15359 0.22727
Mesh (IB) ci=0.5 0.02943 0.03439 0.10305
Mesh (2A) a=Q.5 0.13992 0.19212 0.21311
Mesh (2B) 6i=0.5 0.03842 0.04097 0.13084

triangular meshes are different. Table 2 shows that all 
four irregularity values of the output mesh (IB) are 
much better than those of the output mesh (1A). 
Sim기arly, the irregularity values of the output mesh 
(2B) are much better than those of the output mesh 
(2A). The input meshes (IB) and (2B) were generated 
by the square packing method [23], which locates 
nodes orthogonally and well-aligned along the input 
vector fields.

It is often desirable that elements are aligned along 
the domain boundary. The vector fields shown in Fig. 
10 were calculated automatically from the domain 
boundaries of the input meshes by the method described 
in Section 4.4. Note that the input mesh (1A) in Fig. 10 
is exactly the same as the input mesh of Fig. 9, but 

most of the irregularity vahjes of the output mesh (1A) 
in Table 2 are superior to those of the output meshes in 
Table 1. This shows that the vector field calculated 
automatically by our method results in a high quality 
quadrilateral mesh.

Fig. 11 shows two more examples of input meshes, 
vector fields, and output meshes. Input mesh (3) is a 
graded mesh, and the vector field (3) was automatically 
calculated from its domain boundary. Input mesh (4) is 
a uniform mesh, and the vector field (4) has arbitrary 
directionality. The output meshes (3) and (4) demonstrate 
that our method works effectively when either graded 
meshes or arbitrary vector fields a호e given. Again, the 
input triangular meshes were generated by the square 
packing method.
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(a) input mesh (1A),

(b) input mesh (IB),

and output mesh (1A).

and output mesh (IB).

(c) input mesh (2A), and output mesh (2A),

(d) input mesh (2B), vector field (2), and output mesh (2B).

Fig. 10. Output quadrilateral meshes are improved by using the square packing method, in generating input triangular meshes with mesh 
directionality.

(b)input mesh (2), arbitrary vector field (2),

and output mesh (1),

and output mesh (2).

Fig. 11. The mesh conversion method works well even when graded meshes or arbitrary directionalities are given.
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6. Con에usion

We have presented a new triangular-to-quadrilateral 
mesh conversion method that can control the directionality 
of the output meshes. Our central idea was to use a vector 
fi니d to represent a user-specified mesh directionality 
and then to generate quadrilateral elements well-aligned 
along the vector field. The method first scores, ac­
cording to their shapes and directionality, all possible 
quadrilaterals formed by the pairing of adjacent triangles. 
It then converts the pairs into quadrilateral elements 
in the order of their scores.

The input mesh directionality can either be: (1) 
manually specified by the user; (2) automatically 
generated from the domain boundary; (3) automatically 
generated from a partial directionality input, or (4) 
automatically generated from previous analytic results. 
The method can generate quadrilateral meshes aligned 
with the input mesh directionality, which is one of the 
unique features of the proposed mesh conversion method.

Another feature of our approach is the flexible 
adjustment of the weight between element shape and 
mesh directionality. Because the importance of these 
factors depends on the application of the output meshes, 
it is 니seful that the method adjusts their respective 
priorities by changing the coefficient value in the error 
calculation functions.
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