• Title/Summary/Keyword: triangle free graph

Search Result 6, Processing Time 0.028 seconds

CLIQUE-TRANSVERSAL SETS IN LINE GRAPHS OF CUBIC GRAPHS AND TRIANGLE-FREE GRAPHS

  • KANG, LIYING;SHAN, ERFANG
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1423-1431
    • /
    • 2015
  • A clique-transversal set D of a graph G is a set of vertices of G such that D meets all cliques of G. The clique-transversal number is the minimum cardinality of a clique-transversal set in G. For every cubic graph with at most two bridges, we first show that it has a perfect matching which contains exactly one edge of each triangle of it; by the result, we determine the exact value of the clique-transversal number of line graph of it. Also, we present a sharp upper bound on the clique-transversal number of line graph of a cubic graph. Furthermore, we prove that the clique-transversal number of line graph of a triangle-free graph is at most the chromatic number of complement of the triangle-free graph.

AUGMENTED INVERSE GRAPHS WITH RESPECT TO A GROUP

  • M. LAKSHMI KAMESWARI;N. NAGA MARUTHI KUMARI;T.V. PRADEEP KUMAR
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.2
    • /
    • pp.287-293
    • /
    • 2023
  • In this paper, the Augmented graph Es(τ) of the inverse graph Gs(τ) of a cyclic group (τ,◦) was studied. The Augmented inverse graph was constructed by applying the method of Mycielski's construction. The dimension of Augmented inverse graph and different properties of the graph were investigated. Later the chromatic number of Augmented inverse graph was discussed and the relation between the maximum degree of the graph and the chromatic number was established. In the Mycielski's construction, the properties of the key node 'u' in Es (τ) were established based on cardinality of the cyclic group (τ,◦) and also proved that the Augmented inverse graph Es(τ) was a triangle free graph.

THE AUTOMORPHISM GROUPS OF ARTIN GROUPS OF EDGE-SEPARATED CLTTF GRAPHS

  • Byung Hee An;Youngjin Cho
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1171-1213
    • /
    • 2023
  • This work is a continuation of Crisp's work on automorphism groups of CLTTF Artin groups, where the defining graph of a CLTTF Artin group is connected, large-type, and triangle-free. More precisely, we provide an explicit presentation of the automorphism group of an edge-separated CLTTF Artin group whose defining graph has no separating vertices.

THE ANNIHILATOR IDEAL GRAPH OF A COMMUTATIVE RING

  • Alibemani, Abolfazl;Bakhtyiari, Moharram;Nikandish, Reza;Nikmehr, Mohammad Javad
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.417-429
    • /
    • 2015
  • Let R be a commutative ring with unity. The annihilator ideal graph of R, denoted by ${\Gamma}_{Ann}(R)$, is a graph whose vertices are all non-trivial ideals of R and two distinct vertices I and J are adjacent if and only if $I{\cap}Ann(J){\neq}\{0\}$ or $J{\cap}Ann(I){\neq}\{0\}$. In this paper, we study some connections between the graph-theoretic properties of this graph and some algebraic properties of rings. We characterize all rings whose annihilator ideal graphs are totally disconnected. Also, we study diameter, girth, clique number and chromatic number of this graph. Moreover, we study some relations between annihilator ideal graph and zero-divisor graph associated with R. Among other results, it is proved that for a Noetherian ring R if ${\Gamma}_{Ann}(R)$ is triangle free, then R is Gorenstein.

THE MULTIPLICATIVE VERSION OF WIENER INDEX

  • Hua, Hongbo;Ashrafi, Ali Reza
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.533-544
    • /
    • 2013
  • The multiplicative version of Wiener index (${\pi}$-index), proposed by Gutman et al. in 2000, is equal to the product of the distances between all pairs of vertices of a (molecular) graph G. In this paper, we first present some sharp bounds in terms of the order and other graph parameters including the diameter, degree sequence, Zagreb indices, Zagreb coindices, eccentric connectivity index and Merrifield-Simmons index for ${\pi}$-index of general connected graphs and trees, as well as a Nordhaus-Gaddum-type bound for ${\pi}$-index of connected triangle-free graphs. Then we study the behavior of ${\pi}$-index upon the case when removing a vertex or an edge from the underlying graph. Finally, we investigate the extremal properties of ${\pi}$-index within the set of trees and unicyclic graphs.

A LOWER BOUND FOR THE CONVEXITY NUMBER OF SOME GRAPHS

  • Kim, Byung-Kee
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.185-191
    • /
    • 2004
  • Given a connected graph G, we say that a set EC\;{\subseteq}\;V(G)$ is convex in G if, for every pair of vertices x, $y\;{\in}\;C$, the vertex set of every x - y geodesic in G is contained in C. The convexity number of G is the cardinality of a maximal proper convex set in G. In this paper, we show that every pair k, n of integers with $2\;{\leq}k\;{\leq}\;n\;-\;1$ is realizable as the convexity number and order, respectively, of some connected triangle-free graph, and give a lower bound for the convexity number of k-regular graphs of order n with n > k+1.