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CLIQUE-TRANSVERSAL SETS IN LINE GRAPHS OF CUBIC

GRAPHS AND TRIANGLE-FREE GRAPHS

Liying Kang and Erfang Shan

Abstract. A clique-transversal set D of a graph G is a set of vertices
of G such that D meets all cliques of G. The clique-transversal number

is the minimum cardinality of a clique-transversal set in G. For every
cubic graph with at most two bridges, we first show that it has a perfect
matching which contains exactly one edge of each triangle of it; by the
result, we determine the exact value of the clique-transversal number
of line graph of it. Also, we present a sharp upper bound on the clique-
transversal number of line graph of a cubic graph. Furthermore, we prove

that the clique-transversal number of line graph of a triangle-free graph is
at most the chromatic number of complement of the triangle-free graph.

1. Introduction

All graphs considered here are finite, simple and nonempty. For standard
terminology not given here we refer the reader to [7].

Let G = (V,E) be a graph with vertex set V and edge set E. For a vertex
v ∈ V , the open neighborhood NG(v) of v is defined as the set of vertices
adjacent to v, i.e., NG(v) = {u | uv ∈ E}. The closed neighborhood of v is
NG[v] = NG(v) ∪ {v}. For a subset S ⊆ V , the open neighborhood of S is
NG(S) =

⋃

v∈S N(v) and the closed neighborhood of S is NG[S] =
⋃

v∈S N [v].
The degree of v is equal to |NG(v)|, denoted by dG(v) or simply d(v). A graph
is a cubic graph if every vertex has degree 3. For a subset S ⊆ V , the subgraph
induced by S is denoted by G[S]. As usual, the complete bipartite graph K1,3

is called a claw and the complete graph K3 a triangle. For a given graph F , we
say that a graph G is F -free if it does not contain F as an induced subgraph. In
particular, K1,3-free is also called claw-free. K3-free is also called Triangle-free.
For a family of graphs {F1, . . . , Fk} we say that G is {F1, . . . , Fk}-free if it is
Fi-free for all i = 1, . . . , k. A bridge is an edge of G whose removal increases
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the number of components of G. The line graph L(G) of G is the graph whose
vertices are the edges of G, and two vertices of L(G) are connected if and only
if the edges corresponding to them share a common vertex in G. As is well
known, line graphs are a subclass of claw-free graphs.

A matching M in G is a set of pairwise non-adjacent edges; that is, no two
edges share a common vertex. If M is a matching, the two ends of each edge
of M are said to be matched under M , and each vertex incident with an edge
of M is said to be covered by M . A perfect matching is one which covers every
vertex of the graph. A maximum matching is a matching of G that contains
the largest possible number of edges. The number of edges in a maximum
matching of G is called the matching number of G and denoted α′(G). An edge

cover of a graph G is defined as a set S of edges of G such that every vertex
of G is incident with at least one of members of S. The edge cover number,
denoted by β′(G), is the number of edges in a minimum edge cover of G.

The clique-transversal set in graphs can be regarded as a special case of the
transversal set in hypergraph theory [5]. A clique C of a graph G is a complete
subgraph maximal under inclusion and having at least two vertices. According
to this definition, isolated vertices are not considered to be cliques here. A
clique of order m of G is called an m-clique of G. A set D ⊆ V is called a
clique-transversal set of G if D meets all cliques of G, i.e., D ∩ V (C) 6= ∅ for
any clique C of G. The clique-transversal number, denoted by τC(G), is the
minimum cardinality of a clique-transversal set of G.

Erdős et al. [8] proved that the problem of finding a minimum clique-
transversal set for a graph is NP-hard. It is therefore of interest to determine
bounds on the clique-transversal number of a graph. In [8] the authors showed

that any graph G of order n has 1 ≤ τC(G) ≤ n−
√
2n+3/2 and they observed

that τC(G) can be very close to n = |V (G)|, namely τC = n−o(n) can hold. On
the basis of the fact above, it is reasonable to ask how drastically τC decreases
or increases when some assumptions are imposed on the graph G. From this
point of view, Tuza [14] and Andreae [1] established upper bounds on τC(G)
for chordal graphs G. In [11] we established an upper bound and a sharp lower
bound on τC(G) for connected k-regular graphs G. Bacsó and Tuza [4] found
a tight upper bound on τC(G) for cubic graphs G. In [3] authors studied the
upper bounds on τC for the classes of cographs and clique perfect graphs.

In 1991, Andreae, Schughart and Tuza [2] investigated the clique-transversal
numbers for line graphs and complements of line graphs. They obtained the
following result.

Theorem 1 (Andreae, Schughart and Tuza [2]). Let G be a connected graph

with at least two edges and assume that G is not an odd cycle. Then τC(L(G)) ≤
|E(G)|/2.

This paper was motivated by the above result, we investigate the extremal
behavior of τC(L(G)) on the line graphs of cubic graphs and triangle-free graphs
G. For every cubic graph with at most two bridges, we first show that it has



CLIQUE-TRANSVERSAL SETS 1425

a perfect matching which contains exactly one edge of each triangle of it; by
the result, we can determine the exact value of the clique-transversal number
of line graph of it. Furthermore, we present a tight upper bound on τC(G)
for line graphs of cubic graphs. Finally, we prove that τC(L(G)) ≤ χ(G) for a
triangle-free graph G without isolated vertices, and the equality holds if G has
minimum degree at least two.

2. Line graphs of cubic graphs

For a cubic graph G, let T be a triangle of G and |NG(V (T )) ∩ (V (G) −
V (T ))| = 3. If NG(V (T ))∩ (V (G)− V (T )) is an independent set of vertices in
G, we call T an isolated triangle of G.

Lemma 2. For every cubic graph G with no isolated triangles, there exists a

maximum matching that contains exactly one edge of each triangle in G.

Proof. Without loss of generality, we may assume that G is connected. Suppose
that G contains no triangles, the assertion is trivial. Otherwise, G contains at
least a triangle. Let M be a maximum matching of G that covers triangles of G
as many as possible. Note that M contains at most one edge of each triangle in
G. If M contains exactly one edge of each triangle in G, then there is nothing
to show. Otherwise, there exists at least a triangle T = u1u2u3 whose edges
are not in M . The following proof is by contradiction.

Let S = NG(V (T ))∩ (V (G)− V (T )) and let S = {x1, x2, x3} (xi not neces-
sarily distinct), where xiui ∈ E(G) for 1 ≤ i ≤ 3. If |S| = 1, i.e., x1 = x2 = x3,
then G is isomorphic to K4, the assertion immediately follows. If |S| = 2,
without loss of generality, let x1 = x2. In this case, the induced subgraph
G[{x1}∪V (T )] is a diamond (the graph K4− e obtained from K4 by removing
its one edge). By the maximality of M and E(T ) ∩ M = ∅, it is easy to see
that exactly one of u1x1, u2x1 is in M and u3 is covered by M . Without loss of
generality, assume that x1u1 ∈ M . Let M ′ = (M \ {u1x1})∪{u1u2}. Then M ′

is a maximum matching of G that covers more triangles of G than M , which
contradicts our assumption to M . So we may assumes that |S| = 3, that is,
x1, x2, x3 are distinct. By the maximality of M , there are at least two vertices,
say u1, u2, of V (T ) that are covered by M . Thus u1x1, u2x2 ∈ M . Suppose
that u3 is uncovered by M . Note that the edge u1x1 lies in no triangles of
G. We remove the edge u1x1 from M and add u1u3 to M . The resulting
matching is still maximum and it covers more triangles of G than the primitive
M , a contradiction. Thus, each vertex of T is covered by M , so uixi ∈ M
for 1 ≤ i ≤ 3. Since G contains no isolated triangles, S is not independent.
Without loss of generality, assume that x1x2 ∈ E(G). Clearly each uixi lies in
no triangles of G. Let M ′ = (M \ {u1x1, u2x2}) ∪ {x1x2, u1u2}. Then M ′ is a
maximum matching of G and it covers more triangles of G than M , which is a
contradiction. �
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Remark. The above assertion is still true when the cubic graph is reduced to a
graph with maximum degree at most three.

Lemma 3 ([7]). Every cubic graph with at most two bridges has a perfect

matching.

Theorem 4. Every cubic graph with at most two bridges has a perfect matching

that contains exactly one edge of each triangle in the graph.

Proof. If G contains no isolated triangles, then the result follows from Lemma
2 and Lemma 3. Otherwise, we let G∗ be the graph obtained from G by
contracting each isolated triangle of G to a single vertex. Then G∗ is a cubic
graph with at most two bridges and it contains no isolated triangles. Hence,
by Lemmas 2 and 3, G∗ has a perfect matching M∗ that contains exactly one
edge of each triangle in G∗.

Let Tj = xj1xj2xj3 (j = 1, 2, . . . , l) be all the isolated triangles of G. For
each Tj = xj1xj2xj3 of G, let vTj

be the vertex of G∗ obtained by contracting
the triangle Tj. Since M∗ is a perfect matching of G∗, each vTj

is covered
by M∗, and so precisely one edge incident with vTj

is in M∗. Without loss
of generality, let vTj

u ∈ M∗ and xj1u ∈ E(G). If u is not the vertex of G∗

obtained by contracting a triangle of G, i.e., u 6= vTi
for any 1 ≤ i ≤ l, then

we remove the edge vTj
u from M∗ and add to M∗ the edges xj2xj3 and xj1u.

Suppose that u = vTk
for some k 6= j, 1 ≤ k ≤ l, i.e., u is obtained by

contracting the other triangle Tk of G. Since Tj and Tk are isolated, there is
exactly one edge between V (Tj) and V (Tk). Let xj1xk1 ∈ E(G). Clearly, the
edge xj1xk1 of G corresponds to the edge vTj

vTk
of G∗. In G, we add the edges

xj1xk1, xj2xj3 and xk2xk3 to M∗ and remove the edge vTj
vTk

from M∗. The
updated M∗ is a set of edges of G. Obviously, M∗ is a perfect matching of G
and it contains exactly one edge of each triangle of G, the assertion follows. �

Remark. The conditions in Lemma 2 and Lemma 3 can not be dropped. Let
B1 be the graph, called a balloon, obtained from a complete graph K4 on four
vertices by subdividing an edge of K4. Now let F be the cubic graph obtained
from disjoint union of three copies of B1 and a triangle C3 by joining three
vertices of the triangle to the vertices of degree 2 in the three copies of B1,
respectively. By our construction, F is a cubic graph on 18 vertices with a
isolated triangle C3 and three bridges. It is easily seen that F has a perfecting
matching and α′(F ) = 9. But there is not a perfecting matching of F that
contains edges of the triangle C3.

Let G be a connected graph with at least two edges. Clearly, L(G) has just
two kinds of cliques, namely the ‘star-cliques’ and the ‘triangle-cliques’: the
former are the sets S(x) = {e ∈ E(G) : e is incident with x}, where x is either
a vertex of degree ≥ 3 or a vertex of degree 2 which is not contained in a
triangle of G, while the latter are the edge sets of the triangles of G. Clearly,
for any graph G with minimum degree at least two, each clique-transversal set
of L(G) must be an edge cover of G.
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Theorem 5. For every cubic graph G with at most two bridges, τC(L(G)) =
|E(G)|

3 .

Proof. Let D be a minimum clique-transversal set of L(G). Then D is also an
edge cover of G. To cover all vertices of G, each edge cover of G contains at
least |V (G)|/2 edges of G. Thus τC(L(G)) = |D| ≥ |V (G)|/2 = |E(G)|/3. On
the other hand, by Theorem 4, we know that G has a perfect matching M that
contains exactly one edge of its each triangle. Hence M is a clique-transversal
set of L(G), and thus τC(L(G)) ≤ |M | = |E(G)|/3. �

In [6] a sharp lower bound on the matching number α′(G) is obtained for
a cubic graph G. Further, O and West [12] found the family H1 of extremal
graphs achieving the bound. The family H1 is constructed as follows. Let B1

be the graph as mentioned earlier. In fact, this is the smallest graph in which
one vertex has degree 2 and the others have degree 3. Let T1 be the family of
trees such that every non-leaf vertex has degree 3 and all leaves have the same
color in a proper 2-coloring. Let H1 be the family of cubic graphs obtained
from trees in T1 by identifying each leaf of such a tree with the vertex of degree
2 in a copy of B1.

For characterizing the extremal graphs achieving the upper bound, we need
the following lemma.

Lemma 6 ([12]). If G is a connected cubic graph on n vertices, then α′(G) ≥
(4n− 1)/9, and equality holds if and only if G ∈ H1.

Lemma 7 ([9]). For each graph G of order n, β′(G) + α′(G) = n.

Theorem 8. If G is a connected cubic graph of order n, then

|E(G)|
3

≤ τC(L(G)) ≤ 10|E(G)|+ 3

27
.

Moreover, this left equality holds if and only if G has a perfect matching that

contains exactly one edge of each triangle in G, while this right equality holds

if and only if G ∈ H1.

Proof. Without loss of generality we may assume that G is connected. Note
that each clique-transversal set of L(G) is an edge cover of G while each edge
cover of G contains at least n/2 edges of G. Hence τC(L(G)) ≥ |E(G)|/3.
This equality holds if and only if G has an edge cover of size n/2 that contains
exactly one edge of each triangle in G. Obviously, such an edge cover of size
n/2 is also a perfecting matching of G, as desired.

In order to get the upper bound, we distinguish the following two cases.
Case 1. G contains no isolated triangles.
By Lemma 2, G has a maximum matching that contains exactly one edge of

each triangle inG. LetM be such a matching. For each vertex uncovered byM ,
take an edge incident with the vertex. Denote by M0 the set of all such edges.
Then |M0| = n−2|M |. Clearly, M ∪M0 is a clique-transversal set of L(G). On
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the other hand, since |M ∪M0| = n− |M | = n−α′(G), M ∪M0 is a minimum
edge cover of G. This implies that M ∪M0 is a minimum clique-transversal set
of L(G). By Lemma 6, we have

(1) τC(L(G)) = |M ∪M0| = n− |M | ≤ n− 4n− 1

9
=

10|E(G)|+ 3

27
,

the assertion follows.
Case 2. G contains isolated triangles.
As in the proof of Theorem 4, let G∗ be the graph obtained from G by

contracting each isolated triangle of G to a single vertex. Then G∗ is a con-
nected cubic graph that contains no isolated triangles. Let S∗ be a mini-
mum clique-transversal set of L(G∗). Then, by Case 1, we have τC(L(G

∗)) ≤
(10|E(G∗)|+ 3)/27.

Let Tj (j = 1, 2, . . . , l) be all the isolated triangles of G. Then |E(G∗)| =
|E(G)|−3l. For each Tj , let vTj

be the ‘contracting vertex’ of G∗ corresponding
to Tj . Clearly, at least an edge incident with each ‘contracting vertex’ of G∗

belongs to S∗. Let vTj
u ∈ S∗ and xju ∈ E(G) where xj ∈ V (Tj). If u 6= vTi

for any 1 ≤ i ≤ l, then we remove the edge vTj
u from S∗ and add to S∗ the

edge xju and the edge of Tj not incident with xj . Suppose that u = vTk
for

some k 6= j, 1 ≤ k ≤ l, i.e., u is obtained by contracting the other triangle Tk

of G. Since Tj and Tk are isolated, there is exactly one edge between V (Tj)
and V (Tk). Let xjxk ∈ E(G) where xk ∈ V (Tk). Clearly, the edge xjxk of G
corresponds to the edge vTj

vTk
of G∗. In G, we replace the edge vTj

vTk
of S∗

by the edge xjxk and add the edges of Tj and Tk not incident with xj and xk

respectively, to S∗. The updated S∗ is a set of edges of G. Obviously, S is a
clique-transversal set of L(G). Hence,

τC(L(G)) ≤ |S| ≤ |S∗|+ l =
10|E(G∗)|+ 3

27
+ l

<
10(|E(G∗)|+ 3l) + 3

27

=
10|E(G)|+ 3

27
.

We next show that τC(L(G)) = (10|E(G)|+ 3)/27 if and only if G ∈ H1 for a
connected cubic graph G of order n.

Suppose G ∈ H1. By Lemma 6, α′(G) = (4n − 1)/9. The vertices set in
L(G) corresponding to three edges incident with each vertex in G induces a
3-clique. The edges set of G corresponding to each clique-transversal set in
L(G) is an edge cover set of G. According to Lemma 7, we have

τC(L(G)) = β′(G) = n− α′(G) = n− (4n− 1)/9 = (10|E(G)|+ 3)/27.

Hence τC(L(G)) = (10|E(G)|+ 3)/27.
Conversely, suppose that τC(L(G)) = (10|E(G)| + 3)/27 for a connected

cubic graph G of order n. By the above proof, the Case 2 cannot appear and
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the inequality in equation (1) is equality. Thus, α′(G) = (4n− 1)/9. We have
G ∈ H1 by Lemma 6.

This completes the proof of Theorem 8. �

Now we are ready to present another upper bound on τC(L(G)) for the line
graph L(G) of a cubic graph G. Moreover, we also give a characterization of
the extremal graphs attaining the upper bound. For this purpose, we define
the graph B and the cubic graph H(g) as follows. First, let B be a graph with
girth r in which one vertex has degree two and all others have degree 3 and
such that the order g of B is as small as possible. For example, if r = 3, B is
the balloon B1 with g = 5. If r = 4, then B is the complete bipartite graph
K3,3 with one edge subdivided, and g = 7. The existence of B having girth r
is shown by observing that an r-cage with one edge subdivided will serve (see
[13], for a proof that r-cages exist for all r ≥ 3). Now let H(g) be the cubic
graph obtained from disjoint union of three copies of B by adding a new vertex
and joining it with the vertex of degree 2 in each copy of B, respectively.

Lemma 9 ([10]). If G is a cubic graph of order n with girth r ≥ 3, then

α′(G) ≥
(

3g−1
3g+1

)

n
2 , where g is the number of vertices in B. Moreover, the

equality holds if and only if G is the graph H(g).

For a cubic graph G with girth r ≥ 4, By Lemma 9, we can slightly improve
the result in Theorem 8.

Theorem 10. If G is a cubic graph of order n with girth r ≥ 3, then τC(L(G))

≤ g+1
3g+1 |E(G)|, where g is the number of vertices in B. Moreover, the equality

holds if and only if G is the graph H(g).

Proof. We may assume G is connected. If r = 3, then g = 5. By Theorem 8,
we have

τC(L(G)) ≤ 10|E(G)|+ 3

27
≤ 3

8
|E(G)| = g + 1

3g + 1
|E(G)|,

the assertion holds. So we may assume that r ≥ 4. Since G contains no
triangles, all cliques of L(G) are stars of G. Let M be a maximum matching
of G. For each vertex uncovered by M , take an edge incident with the vertex.
Denote by M0 the set of all chosen edges. Then |M0| = n − 2|M |. Clearly,
M ∪M0 is a clique-transversal set of L(G) as well a minimum edge cover of G.
By Lemma 9, we have

τC(L(G)) = |M ∪M0| = n− |M | ≤ n−
(3g − 1

3g + 1

)n

2
=

g + 1

3g + 1
|E(G)|.

That the equality holds in Theorem 10 implies that the equality in Lemma 9
holds. Therefore, the equality holds if and only if G is the graph H(g). �

Remark. If G is a cubic graph with girth r = 3, then g = 5. By above result,
we have τC(L(G)) ≤ 3|E(G)|/8. In this case, the result in Theorem 8 is better
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than the result 3|E(G)|/8. However, when girth r ≥ 4, since g ≥ 7, we have
τC(L(G)) ≤ (g + 1)|E(G)|/(3g + 1) ≤ 4|E(G)|/11 ≤ (10|E(G)|+ 3)/27.

For general regular graphs, we propose the following problem.

Problem. Find a sharp upper bound on the clique-transversal number for line
graphs of k-regular graphs, where k ≥ 4.

3. Line graphs of triangle-free graphs

Let χ(G) denote the chromatic number of a graph G. The complement G
of G is the graph with the same vertex set but whose edge set consists of the
edges not present in G.

For a general graph G with girth at least 4, we can obtain an upper bound
on τC(L(G)) in terms of χ(G).

Theorem 11. For a triangle-free graph G without isolated vertices, τC(L(G))
≤ χ(G); and if G has minimum degree at least two, then the equality holds.

Proof. Since G is triangle-free, the line graph L(G) of G contains only the
“star-cliques”, so each edge cover of G is a clique-transversal set of L(G).
Hence τC(L(G)) ≤ β′(G). Note that α′(G) + β′(G) = |V (G)|. To obtain our
result, it is sufficient to show that |V (G)|−α′(G) = χ(G). Let k = χ(G) and let
{V1, V2, . . . , Vk} be the partition of V (G), where Vi denotes the set of vertices
assigned colour i in a proper k-colouring ofG. The triangle-freeness ofG implies
that 1 ≤ |Vi| ≤ 2. Clearly, the set of edges induced by the colour classes Vi

with |Vi| = 2 in G is a matching of G. So α′(G) ≥ |V (G)| − χ(G), that is,
χ(G) ≥ |V (G)|−α′(G). On the other hand, let M = {uivi | i = 1, 2, . . . , α′(G)}
be a maximum matching of G. We colour the vertices of G with the colours
1, 2, . . . , |V (G)| −α′(G) as follows: assign the colours 1, 2, . . . , |V (G)| − 2α′(G)
to each vertex V (G) − V (M) respectively and the colours |V (G)| − 2α′(G) +
1, . . . , |V (G)| − α′(G) to each pair {ui, vi} respectively. It is easy to see that
the colouring is a proper colouring of G. So χ(G) ≤ |V (G)| − α′(G). Thus
χ(G) = |V (G)| − α′(G).

If G has minimum degree at least two, then the set of edges incident with
any vertex of G induces a clique of L(G). Note that the line graph L(G) of G
contains only the “star-cliques”. Thus each minimum clique-transversal set of
L(G) corresponds to a minimum edge cover of G. Hence τC(L(G)) = β′(G),
that is, τC(L(G)) = χ(G). �
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