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THE AUTOMORPHISM GROUPS OF ARTIN GROUPS OF

EDGE-SEPARATED CLTTF GRAPHS

Byung Hee An and Youngjin Cho

Abstract. This work is a continuation of Crisp’s work on automorphism

groups of CLTTF Artin groups, where the defining graph of a CLTTF
Artin group is connected, large-type, and triangle-free. More precisely, we

provide an explicit presentation of the automorphism group of an edge-
separated CLTTF Artin group whose defining graph has no separating

vertices.

1. Introduction

1.1. CLTTF Artin groups

Let Γ be a simple graph such that every edge e carries an integer label
m(e) ≥ 2. An Artin group AΓ with a defining graph Γ is generated by vertices
of Γ and related by

sts · · ·︸ ︷︷ ︸
m(e)

= tst · · ·︸ ︷︷ ︸
m(e)

for each edge e joining s and t. A set of generators is called that of Artin
generators if a defining graph can be recovered by using them as vertices. For
example, the 4-strand braid group is an Artin group defined by the triangle
with edge labels 2, 3, 3. If all edge labels are 2, AΓ is called a right-angled Artin
group. An Artin group is rigid if it has a unique defining graph, or equivalently,
if a set of Artin generators is sent to any other set of Artin generators by an
automorphism of the Artin group. Right-angled Artin groups [5] and Artin
groups of finite type [1] are known to be rigid. In general, Artin groups need
not be rigid.

From now on, we fix a finite set V of vertices and assume that a graph Γ is
edge-labeled whose set of edges is denoted by E(Γ). Suppose that a graph Γ
has two subgraphs Γ1 and Γ2 with intersection Γ0 such that AΓ0 is an Artin
subgroup of finite type. In [2], the author proposes a typical way of obtaining
a new defining graph from Γ under this circumstance. Recall that there is
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a unique element λ in AΓ0
, which is the longest element in the associated

Coxeter group, such that the conjugation by λ permutes elements of Γ2. A
new set S′ obtained from V by replacing elements of V (Γ2) by their conjugates
by λ generates AΓ and then S′ determines a new defining graph ∆ that is
called an edge-twist of Γ with respect to the triple (Γ1,Γ0,Γ2). In fact ∆ is
obtained from Γ by replacing each edges joining a vertex v in Γ0 and a vertex
w in Γ2 by a new edge joining v and λwλ−1. We may identify V (∆) with
V since only edges are altered. There is an obvious isomorphism : AΓ → A∆

called a twist isomorphism, that sends each v ∈ V (Γ2) to λvλ−1 and fixes other
generators. It is a conjecture that two defining graphs of an Artin group are
twist-equivalent, that is, related via a series of twists.

There have been extensive researches on automorphism groups of free abelian
groups, free groups, and more generally, right-angled Artin groups. In particu-
lar isometric actions on appropriate spaces by outer automorphisms are studied
to understand geometric structures of groups of outer automorphisms. There
are also many complete results on automorphism groups of some Artin groups
of finite type. Nielsen automorphisms or Whitehead automorphisms on free
groups can be adapted to form a set of generators of automorphism groups
when they are appropriate. They are usually classified as one of the follow-
ing types: permutations of generators, inversions, transvections, and partial
conjugations. For right-angled Artin groups, peak reduction arguments can be
employed to obtain a complete set of relations among generators [3, 4].

On the other hand, there are very few results on automorphism groups of
non-rigid Artin groups. J. Crisp gave the first noticeable result in [2]. He
considered CLTTF Artin groups defined by graphs that are Connected, has
edge labels ≥ 3 (Large Type), and is Triangle Free. CLTTF Artin groups form
a somewhat manageable family of non-rigid Artin groups in studying their
automorphism groups. In fact there are no transvections and twists occur only
along edges with odd labels. Furthermore two defining graphs of a CLTTF
group are twist-equivalent [2]. He showed that the isomorphism groupoid of a
CLTTF Artin group is generated by graph automorphisms, inversions, partial
conjugations, and twist isomorphisms. However given a CLTTF Artin group, it
is not feasible to obtain a presentation of its automorphism group by using the
groupoid since its automorphism can be given by any circuit including loops in
the graph of groupoid.

1.2. Results

In this paper, we provide concrete and explicit description and group pre-
sentations of the (outer) automorphism group, whose generators are vertices,
edge-twists, and certain graph isomorphisms. To this end, we first define a
directed rooted tree (ChΓ, ∗Γ) for each edge-separating CLTTF graph Γ, whose
vertices are chunks and separating edges of Γ and whose edges are given by
inclusions between separating edges and chunks. Roughly speaking, chunks are



ARTIN GROUPS OF EDGE-SEPARATED CLTTF GRAPHS 1173

maximal indecomposable subgraphs. We call (ChΓ, ∗Γ) called the chunk tree.
See Definitions 2.2, 2.3 and Theorem 2.4.
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Figure 1. An edge-separated CLTTF graph Γ and its chunk
tree ChΓ

Then we may permute vertices or twist edges attached to each separating
edge in order to obtain new CLTTF graphs. See Definition 2.9 and the following
picture for what twisting edges means. We define a category G of CLTTF graphs
whose morphisms correspond to these operations so that the automorphism
group AutG(Γ) of Γ ∈ G can be used to compute the (outer) automorphism
group of the CLTTF Artin group AΓ.

We say that a CLTTF graph Γ is discretely rigid if any non-trivial composi-
tion of edge-twists on Γ yields a CLTTF graph ∆, which is non-isomorphic to
Γ.

Corollary 1.1 (Corollary 2.37). Let Γ be a discretely rigid CLTTF graph. Then
the automorphism group AutG(Γ) is the semidirect product of the free abelian
group generated by edge-twists and the automorphism group of Γ:

AutG(Γ) ∼= Z#(Eout
JΓK) ⋊Aut(Γ).

We also define a category A of edge-separated CLTTF Artin groups with
morphisms given by graph isomorphisms and partial conjugations, which are
essentially part of generators that Crisp gave. Then the canonical assignment
Γ 7→ AΓ will define a functor F : G → A, which is indeed an equivalence of
categories.

Theorem 1.2 (Theorem 3.9). The induced functor F : G → A is an equivalence
of categories.
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In particular, for each Γ, there is a group isomorphism

AutG(Γ) ∼= AutA(Γ).

Theorem 1.3 (§ 4.1.2, Theorem 4.5). There is an isomorphism

Out(AΓ) ∼= (AutA(AΓ)/ZΓ)⋊ Z2,

where

ZΓ := Inn(AΓ) ∩AutA(AΓ) ∼=

{
1 ∗Γ is a chunk;

Z ∗Γ is a separating edge.

In particular, when ∗Γ is a chunk or Γ is discretely rigid, we have the following
consequence.

Corollary 1.4 (Corollaries 4.6 and 4.7). If ∗Γ is a chunk, then

Aut(AΓ) ∼= Inn(AΓ)⋊Out(AΓ), Out(AΓ) ∼= AutA(AΓ)⋊ Z2.

Moreover, if Γ is discretely rigid and ∗Γ is a chunk, then

Aut(AΓ) ∼= Inn(AΓ)⋊
((

Z#(Eout
JΓK) ⋊Aut(Γ)

)
⋊ Z2

)
,

Out(AΓ) ∼=
(
Z#(Eout

JΓK) ⋊Aut(Γ)
)
⋊ Z2.

In general, explicit group presentations for both automorphism and outer au-
tomorphism groups of arbitrary edge-separated CLTTF Artin groups are given
as follows:

Theorem 1.5 (Theorem 4.11). Let Γ = (V,E,m) be a CLTTF graph. Then
the automorphism group Aut(AΓ) and outer automorphism group admit the
following finite group presentations:

Aut(AΓ) ∼=
〈
V, S, ι

∣∣∣ R0, R1, R2, R3, R4, R̃Φ

〉
,

Out(AΓ) ∼=
〈
V, S, ι

∣∣∣ R0, R1, R2, R3, R4, R̃Φ, V
〉

∼= ⟨S, ι | R1, R2, R3, R4, RΦ⟩ .

Here, the sets S,R0, . . . , R4, R̃Φ and RΦ are briefly described in Table 1.

1.3. Outline

The rest of the paper is organized as follows. In Section 2, we review basics
on CLTTF graphs including chunk trees, graph isomorphisms, edge-twists and
their pull-backs and push-forwards. We also define the subgroup Twist(Γ) of
the permutation group SV consisting of graph isomorphisms whose source and
target are edge-twist equivalent. We further define the category G of CLTTF
graphs whose morphisms are isomorphisms freely generated by graph isomor-
phisms and edge-twists.

In Section 3, we review CLTTF Artin groups and their isomorphisms, and
define the category A of CLTTF Artin groups whose morphisms are generated
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Table 1. The sets S,R0, R1, R2, R3, R4, R̃Φ and RΦ

S even edge-twists and twist isomorphisms
R0 relations coming from (the action on) Inn(AΓ)
R1 even edge-twists commute with each other
R2 twist isomorphisms conjugate even edge-twists to their push-forwards
R3 twisted intersection products of products of twist isomorphisms
R4 actions of the global inversion ι

R̃Φ the special automorphism in Aut(AΓ)
RΦ the special automorphism in Out(AΓ)

by graph isomorphisms and partial conjugations. We prove the equivalence
between categories G and A, and the relationship between our and Crisp’s
categories of CLTTF Artin groups is briefly explained.

In Section 4, we introduce the twisted intersection product between graph
isomorphisms in Twist(Γ) and finally we provide the group presentations for
both Aut(AΓ) and Out(AΓ).

Acknowledgements. The first author was supported by Kyungpook National
University Research Fund, 2020.

2. CLTTF Graphs

2.1. CLTTF graphs and chunk trees

Let Γ = (V,E,m) be a simple graph with an edge-label m : E → Z≥2. We
call Γ CLTTF if it satisfies the following:

• it is Connected,
• it is of Large Type, i.e., m(e) ≥ 3 for every edge e ∈ E,
• it is Triangle-Free, i.e., there are no full subgraphs of three vertices

which look like a triangle.

A decomposition of Γ along a subgraph Γ0 is a triple (Γ1,Γ0,Γ2) such that
Γi = (Vi, Ei)’s are full subgraphs different from Γ0 whose union and intersection
are Γ and Γ0, respectively,

Γ = (V,E) = (V1 ∪ V2, E1 ∪ E2) = Γ1 ∪ Γ2,

Γ0 = (V0, E0) = (V1 ∩ V2, E1 ∩ E2) = Γ1 ∩ Γ2.

We call a vertex v or an edge e separating if there exists a decomposition
with Γ0 = v or e and we say that a CLTTF graph Γ is edge-separated if there
are no separating vertices. See Figure 1 for an example. Note that we usually
suppress labels m on edges if m = 3.

Throughout this paper, we assume the following.
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Assumption 2.1. We assume that every CLTTF graph is edge-separated, and
for a finite fixed set V with #(V ) ≥ 3, we define the set G of all CLTTF graphs
with the set V of vertices.

Definition 2.2 (Chunk). Let C be a connected full subgraph of Γ ∈ G. We
say that C is indecomposable if, for every decomposition (Γ1, e,Γ2) of Γ over a
separating edge e, either C ⊂ Γ1 or C ⊂ Γ2.

By a chunk of Γ we mean a maximal indecomposable subgraph of Γ.

Notice that a chunk C of a CLTTF graph Γ is again a CLTTF graph with
at least 3 vertices without separating vertices and edges. Moreover, any two
chunks of Γ intersect, if at all, along a single separating edge. Hence we can
construct a new graph from Γ consisting of chunks and separating edges as
follows:

Definition 2.3 (Chunk graph). The chunk graph ChΓ = (VΓ, EΓ,mΓ) for Γ =
(V,E,m) ∈ G is a directed edge-labeled graph constructed as follows:

• The set VΓ of vertices consists of chunks and separating edges

VΓ = {C ⊂ Γ | C is a chunk} ∪ {e ⊂ Γ | e is a separating edge}.

• The set EΓ of directed edges consists of pairs of a separating edge e and
a chunk C for e ⊂ C

EΓ = {(e, C) | e ⊂ C, e is a separating edge, C is a chunk}, mΓ(e, C) = m(e).

As seen in Figure 1, one can easily observe the following: the chunk graph
ChΓ is

• simple and connected,
• bipartite with respect to being a separating edge and being a chunk,
and

• a tree whose leaves are chunks.

The first two observations are obviously true for any edge-separated CLTTF
graphs by the construction of the chunk graph. Indeed, ChΓ has no multiple
edges since any two chunks have at most one common edge, no edges connecting
two chunks or two separating edges, and no loops.

The connectivity of Γ implies the connectivity of ChΓ. Moreover, since each
separating edge of Γ should be contained in at least two chunks of Γ, all uni-
valent vertices of ChΓ are chunks.

Theorem 2.4. The chunk graph ChΓ is a tree whose leaves are chunks of Γ,
and we will call ChΓ the chunk tree for Γ.

Proof. Suppose that ChΓ is not a tree. Since ChΓ is simple and bipartite, any
embedded cycle in ChΓ has four or more vertices, of which more than one
vertex correspond to separating edges. Therefore ChΓ can not be disconnected
removing one separating edge of the cycle, which is a contradiction. □
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One of the direct consequence of the theorem is that ChΓ has a unique vertex
∗Γ such that any vertex in ChΓ is far from ∗Γ at most Diam(ChΓ)/2, where
Diam(ChΓ) is the diameter of ChΓ with respect to the edge-length. Hence the
vertex ∗Γ plays the role of the center of ChΓ.

Definition 2.5 (Center of the chunk tree). We call the vertex ∗Γ the center
of the chunk tree ChΓ.

Let ε = (e, C) be an edge of the chunk tree ChΓ. By cutting ε in ChΓ, we have
two disjoint subgraphs ChΓ,1(ε) and ChΓ,2(ε) containing e and C, respectively.
Then it induces a decomposition (Γ1(ε), e,Γ2(ε)) such that each Γi(ϵ) is the
union of all chunks corresponding to vertices in ChΓ,i(ε). See Figure 2 for
example.

Remark 2.6. Each edge in ChΓ induces a decomposition of Γ, but not every
decomposition of Γ comes from an edge in ChΓ.

2.2. Modifications of CLTTF graphs

We introduce two ways of modifications which are graph isomorphisms and
edge-twists.

2.2.1. Graph isomorphisms. Let SV be the group of permutations on V and
let (α : V → V ) ∈ SV . Then for each graph Γ = (V,EΓ,mΓ), there exists a
unique graph ∆ = (V,E∆,m∆) such that the permutation α induces a graph
isomorphism Γ → ∆, denoted by α again. Here we mean by a graph isomor-
phism α from Γ to ∆ a permutation on V which preserves edges with labels,
i.e., for every pair {s, t} ⊂ V , s ̸= t,

{s, t} ∈ EΓ ⇐⇒ {α(s), α(t)} ∈ E∆

and for each e ∈ EΓ, mΓ(e) = m∆(α(e)). We also denote by Γ ∼= ∆ if Γ and ∆
are isomorphic as CLTTF graphs. For each Γ ∈ G, let us denote [Γ] the graph
isomorphism class of Γ in G:

[Γ] := {∆ ∈ G | ∆ ∼= Γ}.

Remark 2.7. The set [G] = {[Γ] | Γ ∈ G} of isomorphism classes is the same as
the set of CLTTF graphs up to isomorphism, or the set of unlabelled CLTTF
graphs.

Since each graph isomorphism preserves the connectivity of subgraphs and
labels, it maps chunks and separating edges to themselves, respectively. In
other words, it preserves the chunk tree.

Theorem 2.8. Let α ∈ SV . For each Γ and ∆ = α(Γ), there is an induced
isomorphism between rooted trees

Ch(α) : (ChΓ, ∗Γ) → (Ch∆, ∗∆).
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Figure 2. An edge in ChΓ and a decomposition

2.2.2. Edge-twists. Another way to obtain a new CLTTF graph is an edge-
twist.

Definition 2.9 (Edge-twists). Let (Γ1, e = {s, t},Γ2) be a decomposition
of Γ = (V,EΓ,mΓ). The edge-twist of Γ with respect to the decomposition
(Γ1, e,Γ2) is the graph ∆ = (V,E∆,m∆) with the label m∆ : E∆ → Z≥2

obtained as follows:

• if mΓ(e) is even, then (E∆,m∆) := (EΓ,mΓ),
• if mΓ(e) is odd, then

E∆ := {e} ∪ {f | f ∈ EΓ, f ̸⊂ Γ2 or f ∩ e = ∅}
∪ {{v, s}, {w, t} | v, w ∈ Γ2, {v, t}, {w, s} ∈ EΓ},
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m∆(f) :=


mΓ(e) f = e;

mΓ(f) f ̸⊂ Γ2 or f ∩ e = ∅;

mΓ({v, s}) f = {v, t}, v ∈ Γ2;

mΓ({w, t}) f = {w, s}, w ∈ Γ2.

We say that Γ and ∆ are edge-twist equivalent if ∆ is obtained from Γ by
a sequence of edge-twists, denoted by Γ ∼ ∆ and let JΓK be an edge-twist
equivalence class of an edge-separated CLTTF graph Γ:

JΓK := {∆ | Γ ∼ ∆}.

Roughly speaking, the edge-twist along (Γ1, e = {s, t},Γ2) with m(e) odd
will interchange the connectivities with s and t only for vertices in Γ2. An
intuitive example is depicted as follows:

Γ = Γ1 Γ2

t

e

s

Γ1 Γ2

t

e

s

= ∆
edge-twist

Lemma 2.10. Let (Γ1, e,Γ2) be a decomposition of Γ and ∆ be the edge-twist
∆ of Γ with respect to (Γ1, e,Γ2). If m(e) is odd, then ∆ ̸= Γ.

Proof. This is obvious since Γ is triangle-free. □

As mentioned above, each edge ε = (e, C) ∈ EΓ in the chunk tree gives
us a decomposition (Γ1(ε), e,Γ2(ε)), whose corresponding edge-twist will be
denoted by ε. If we obtain a new graph ∆, then we write

∆ = ε(Γ), or ε : Γ → ∆.

Notice that the decomposition (Γ1, e,Γ2) of Γ can be regarded as a decom-
position of ∆ as well. Therefore, chunks and separating edges in Γi ⊂ Γ are
again chunks and separating edges in Γi ⊂ ∆. Namely, we have an induced
isomorphism between chunk trees.

Theorem 2.11. Let (Γ1, e,Γ2) be a decomposition of Γ. The edge-twist Γ → ∆
with respect to the decomposition (Γ1, e,Γ2) induces an isomorphism (ChΓ, ∗Γ)
→ (Ch∆, ∗∆) between rooted trees.

In particular, for each ε ∈ EΓ, the induced isomorphism will be denoted by
Ch(ε):

Ch(ε) : (ChΓ, ∗Γ) → (Ch∆, ∗∆).

Proof. This follows obviously from the above discussion and we omit the proof.
□

The direct consequence of this theorem is as follows:
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Corollary 2.12. Let Γ be a CLTTF graph. Then the pair (ChJΓK, ∗JΓK) of the
chunk tree ChJΓK and the central vertex ∗JΓK for the class JΓK is well-defined.

In other words, there is a canonical identification (ChΓ, ∗Γ) ∼= (Ch∆, ∗∆) if
Γ ∼ ∆.

Furthermore, each edge-twist ε : Γ → ∆ induces a label-preserving bijection
ε : (EΓ,mΓ) → (E∆,m∆). That is, for each edge e ∈ EΓ, we have an edge
ε(e) in ∆ so that mΓ(e) = m∆(ε(e)). In particular, for each separating edge
e ⊂ EΓ, then its label remains the same in its edge-twist equivalence class.
Moreover, for each edge ε = (e, C) ∈ EJΓK, the label mJΓK(ε) is well-defined as
mΓ(e).

Due to Remark 2.6, edge-twists with respect to arbitrary decompositions of
Γ form a strictly larger class than those with respect to decompositions coming
from edges in the chunk tree ChΓ. However, one can easily check that every
edge-twist is actually a composition of the latter edge-twists. See Figure 3 for
example. Note that in Figure 3, the chunk trees are identified in the obvious
way.

More precisely, let e ⊂ Γ be an odd-labeled separating edge and let C1, . . . ,
Cn ⊂ Γ be all chunks containing e. In the chunk tree ChΓ, the vertex e is of
n-valent and edges εi = (e, Ci) are adjacent to e. Suppose that a decomposition
(Γ1, e,Γ2) is given such that for some ℓ < n. That is,

C1, . . . , Cℓ ⊂ Γ1 and Cℓ+1, . . . , Cn ⊂ Γ2.

Then the edge-twist with respect to (Γ1, e,Γ2) is nothing but the composition

εℓ+1εℓ · · · εn : Γ → ∆.1

In this sense, it is enough to consider edge-twists along edges in the chunk tree.
Then one can easily check that for every i, j ∈ {1, . . . , n},
(2.1) εi(εj(Γ)) = εj(εi(Γ)) and εi(εi(Γ)) = Γ.

On the other hand, edge-twists along all edges in ChΓ are sometimes too
many. If we take edge-twists on Γ with respect to all εi’s, then the result graph

∆ = (ε1ε2 · · · εn)(Γ)
is obtained from Γ by interchanging the roles of two vertices of e. That is, there
is a graph isomorphism α ∈ SV with α(Γ) = ∆ defined by

α(v) =


v v ̸= s, t;

t v = s;

s v = t.

Therefore, up to graph isomorphisms, one may reduce one of edge-twists ε1, ε2,
. . . , εn.

1Here we omit the notation ◦ for compositions.
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Figure 3. A composition of edge-twists

We will provide a systematical way of doing this as follows: recall that ChΓ
has the central vertex ∗Γ. Then we have another orientation on edges of ChΓ
given by the away-from-center convention. We say that an edge ε = (e, C) ∈ EΓ
is outward or inward if C is farther or closer than e from ∗Γ, respectively.
We denote the subset of outward and inward edges in ChΓ by Eout

Γ and E in
Γ ,

respectively.
For example, the chunk tree ChΓ in Figure 1 has three inward edges ε1, ε2, ε3

and four outward edges ε4, ε5, ε6, ε7.

E in
Γ = {ε1, ε2, ε3}, Eout

Γ = {ε4, ε5, ε6, ε7}.

One simple but important observation is as follows: in the chunk tree ChΓ
and a separating edge e, there are at most one inward edge adjacent to e.
Indeed, the case without inward edge is when ∗Γ = e is the central vertex of
ChΓ.
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In summary, it suffices to consider edge-twists with respect to outward edges
in ChΓ since every edge-twist is a combination of those and graph isomorphisms.

Remark 2.13. Even though we consider outward edges only in ChΓ, there are
still possibilities that compositions of edge-twists involving different separating
edges become graph isomorphisms as well. We will consider these cases later
in Section 2.3.

Let ε ∈ EΓ and (Γ1, e,Γ2) be the decomposition corresponding to ε. For a
sake of convenience, we define for each i = 1, 2,

Γi(ε) := Γi ⊂ Γ and Vi(ε) := V (Γi) ⊂ V.

Lemma 2.14. Edge-twists along outward edges in the chunk tree are commu-
tative and involutive.

Proof. By definition of edge-twists, it is obvious that for ε ∈ Eout(ChJΓK) and
any ∆ ∼ Γ,

(2.2) ε2(∆) = (εε)(∆) = ∆

and so edge-twists along outward edges are involutive.
Let ε = (e, C), ε′ = (e′, C ′) ∈ Eout

JΓK. If e = e′ or e ∩ e′ = ∅, then cor-

responding edge-twists will commute. Otherwise, there are three cases (i)
C ̸⊂ Γ2(ε

′) and C ′ ̸⊂ Γ2(ε), (ii) C ̸⊂ Γ2(ε
′) and C ′ ⊂ Γ2(ε), and (iii) C ⊂

Γ2(ε
′) and C ′ ̸⊂ Γ2(ε), according to whether C ⊂ Γ2(ε

′) or C ′ ⊂ Γ2(ε) for
decomposition (Γ1(ε), e,Γ2(ε)) and (Γ1(ε

′), e′,Γ2(ε
′)) induced from ε and ϵ′,

respectively.
Notice that when C ⊂ Γ2(ε

′) and C ′ ⊂ Γ2(ε), then C = C ′ and at least one
of ε and ε′ should be inward.

For each case, edge-twists are commutative as shown in Figure 4 and we
omit the detail. □

Remark 2.15. We remark that for any ε, ε′ ∈ Eout
JΓK, two sets V \ V1(ε) and

V \ V1(ε
′) are either disjoint or nested.

Remark 2.16. We can exclude the case (i) corresponding to the schematic
picture depicted in Figure 4a since it always contains a separating vertices
v = e ∩ e′, but the commutativity still holds for this situation as well.

For each i ∈ {0, 1}, let us define the subset Eout,i
JΓK of Eout

JΓK as

Eout,i
JΓK = {ε ∈ Eout

JΓK | mJΓK(ε) ≡ i mod 2},

and for each function η : Eout,1
JΓK → Z2, we define the composition E(η) of edge-

twists as

E(η) =
∏

ε∈Eout,1
JΓK

εη(ε).
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e
e′

C

C ′

C

C ′

C

C ′

C

C ′

ε

ε′ ε′

ε

(a) C ̸⊂ Γ2(ε
′) and C′ ̸⊂ Γ2(ε)

e
e′

C

C ′

C

C ′

C

C ′

C

C ′

ε

ε′ ε′

ε

(b) C ̸⊂ Γ2(ε
′) and C ⊂ Γ2(ϵ)

e
e′

C

C ′

C

C ′

C

C ′

C

C ′

ε

ε′ ε′

ε

(c) C ⊂ Γ2(ε
′) and C′ ̸⊂ Γ2(ε)

Figure 4. Commutativity of edge-twists

Proposition 2.17. For each ∆ ∈ JΓK, there exists a unique η : Eout,1
JΓK → Z2

with E(η) : Γ → ∆.

Proof. By definition of edge-twist equivalence, the existence is obvious. Let η
and η′ be two such functions. That is,

E = E(η) : Γ → ∆ and E ′
= E(η′) : Γ → ∆.

We define (η + η′) : Eout,1
JΓK → Z2 as the point-wise addition over Z2

(η + η′)(ε) := η(ε) + η′(ε) =

{
0 η(ε) = η′(ε);

1 η(ε) ̸= η′(ε),

and then by Lemma 2.14, we have E ′−1E = E(η + η′) : Γ → Γ.

Now let ε = (e = {s, t}, C = (VC , EC)) ∈ Eout,1
JΓK be one of the farthest

odd-labeled edge from the center ∗JΓK with (η + η′)(ε) = 1. Pick an edge
{v, s} ∈ EC with v ̸= s, t. Then by definition of edge-twist, {v, t} ∈ EC . This
is a contradiction since the set {v, s, t} of vertices forms a triangle but Γ is
triangle-free. Hence there are no such ε and so (η + η′) ≡ 0, or equivalently, η
coincides with η′. □
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2.2.3. Pull-backs and push-forwards. Now let us describe how graph isomor-
phisms and edge-twists interact with each other.

(a) Let α : Γ → ∆ be a graph isomorphism and ε = (e, C) ∈ EΓ with
Γ′ = ε(Γ). We define the push-forwards α∗(ε) : ∆ → ∆′ of ε via α as the

edge-twist α∗(ε) := α∗(ε), where

α∗(ε) := Ch(α)(ε) = (α(e), α(C)) ∈ E∆.

Then it is obvious that α ∈ SV induces a graph isomorphism α : Γ′ → ∆′,
which fits into the diagram in Figure 5a.

(b) Let ε′ = (e′, C ′) : ∆ → ∆′ be an edge-twist. Then the pull-back α∗(ε′)

of ε′ via α is defined as the edge-twist α∗(ε) := α∗(ε), where

α∗(ε′) = α−1
∗ (ε′) = (α−1(e′), α−1(C)) ∈ EΓ.

Then as before, the permutation α′ ∈ SV induces a graph isomorphism α :
Γ′ → ∆′. See Figure 5b.

(c) For a graph isomorphism α′ : Γ′ → ∆′ and an edge-twist ε : Γ → Γ′, we
define ∆ = α′(Γ). Then the push-forward α∗(ε) : ∆ → ∆′ is the edge-twist,
which fits into the diagram in Figure 5c.

(d) For an edge-twist ε′ : ∆ → ∆′, by using the inverse α′−1 as before, there
exist a graph Γ = α−1(∆′) and an edge-twist α∗(ε′) : Γ → Γ′. See Figure 5d.

Example 2.18. Recall the graph Γ in Figure 1. Let (α0 : Γ → Γ) ∈ Aut(Γ)
be a graph automorphism which switches vertices j and k with ℓ and m,

α0(j) = ℓ, α0(ℓ) = j, α0(k) = m, α0(m) = k,

and let ε = (e2, C2) : Γ → Γ′ be an edge-twist. Then we have a CLTTF graph

∆′ = α0(Γ
′) and an edge-twist (α0)∗(ε) = (e2, C3) : ∆ → ∆′ as depicted in

Figure 6.

Remark 2.19. Notice that in the previous example, the graph isomorphism
α0 : Γ′ → ∆′ is not an automorphism anymore, i.e., EΓ′ ̸= E∆′ .

2.2.4. Discrete rigidities. We consider the following rigidities of CLTTF graphs.
Recall that two edge-twist equivalent graphs have the same set of vertices.

Definition 2.20 (Rigidity of CLTTF graphs). A CLTTF graph Γ is said to be

(1) rigid if

Γ ∼ ∆ =⇒ Γ ∼= ∆, or equivalently, JΓK ∩ [Γ] = JΓK,

(2) discretely rigid if

Γ ∼ ∆ and Γ ∼= ∆ =⇒ Γ = ∆, or equivalently, JΓK ∩ [Γ] = {Γ}.

Remark 2.21. One can see these rigidity as follows: rigid if and only if JΓK up
to graph isomorphism is a singleton, and discretely rigid if JΓK up to graph
isomorphism is the same as JΓK itself.
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Γ ∆

Γ′

α

ε =⇒
Γ ∆

Γ′ α(Γ′)

α

ε α∗(ε)

α

(a)

Γ ∆

∆′

α

ε′ =⇒
Γ ∆

α−1(∆′) ∆′

α

α∗(ε′) ε′

α

(b)

Γ

Γ′ ∆′

ε

α′

=⇒
Γ α′(Γ)

Γ′ ∆′

α′

ε α′
∗(ε)

α′

(c)

∆

Γ′ ∆′

ε′

α′

=⇒
α′−1(∆) ∆

Γ′ ∆′

α′

α∗(ε′) ε′

α′

(d)

Figure 5. Push-forwards and pull-backs

There are examples of rigid but not discretely rigid CLTTF graphs, and vice
versa.

Example 2.22. The CLTTF graph Γ below is rigid but not discretely rigid,
while ∆ is discretely rigid but not rigid:

Γ =

a

4

b

f

3

c

e

4

d

4

6

6

6

∆ =

a

4

b

h

3

c

g

3

d

f

4

e

4

6

4

6

4

6

Lemma 2.23. Let Γ = (V,E,m) be a rigid and discretely rigid CLTTF graph.
Then for each separating edge e, the label m(e) is even.

Proof. Since Γ is rigid and discretely rigid, Γ ∼ ∆ implies Γ = ∆. However,
if there is an odd-labelled edge e ∈ E, then an edge-twist involving e yields
an edge-twist equivalent graph ∆ different from Γ as mentioned earlier. This
contradiction completes the proof. □



1186 B. H. AN AND Y. CHO

Γ =

a
d

i
e

b c

f

g

h
j

k

ℓ

m

e1

e2

e3

C4

C1

C2

C3

C0

a
d

i
e

b c

f

g

h
j

k

ℓ

m

e1

e2

e3

C4

C1

C2

C3

C0 = Γ

Γ′ =

a
d

i
e

b c

f

g

h
j

k

ℓ

m

e′1

e′2

e′3

C ′
4

C ′
1

C ′
2

C ′
3

C ′
0

a
d

i
e

b c

f

g

h
j

k

ℓ

m

e′′1

e′′2

e′′3

C4

C ′′
1

C ′′
2

C ′′
3

C ′′
0 = ∆′

α0

ε (α0)∗(ε)

α0

Figure 6. An example of push-forward

2.3. The group Twist(Γ)

As mentioned earlier in Remark 2.13, we will consider graph isomorphisms
which can be expressed as compositions of edge-twists as well in this sec-
tion. Namely, those are graph isomorphisms between edge-twist equivalent
graphs. Let ∆ be a graph which is edge-twist equivalent to and isomorphic to
Γ. Namely,

∆ ∼ Γ and ∆ ∼= Γ or equivalently, ∆ ∈ JΓK ∩ [Γ].

Hence there are two ways of obtaining ∆ from Γ so that for some α ∈ SV and
η : Eout,1

JΓK → Z2,

∆ = E(η)(Γ) = α(Γ).

We define the set Twist(Γ) consisting of such graph isomorphisms

Twist(Γ) = {α ∈ SV | Γ ∼ α(Γ)} ⊂ SV .
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Remark 2.24. By Proposition 2.17, the composition E is uniquely determined
only by ∆. Hence we will not lose any information even though we throw out
E .

Lemma 2.25. The set Twist(Γ) is closed under the composition.

Proof. For i = 1, 2, let αi ∈ SV with αi(Γ) = ∆i be elements in Twist(Γ).
Then we need to show that Γ ∼ ∆ = α(Γ), where α = α2α1 is the composition.

By definition of Twist(Γ) and Proposition 2.17, there exist unique compo-
sitions Eα1 and Eα2 of edge-twists such that Eαi : Γ → ∆i for i = 1, 2. Then

as seen in the previous section, we have the push-forward E ′
α1

:= (α2)∗(Eα1
) :

∆2 → ∆ for ∆ = α2(∆1), which fits into the diagram in Figure 7a. Therefore
the graph ∆ is edge-twist equivalent to Γ via the composition

Eα := E ′
α1
Eα2

: Γ → ∆

and we are done. □

Theorem 2.26. The set Twist(Γ) has a group structure with respect to the
composition.

Proof. Obviously, the identity isomorphism Id : Γ → Γ is in Twist(Γ) and plays
the role of the identity under the composition.

Let α ∈ SV be in Twist(Γ) and let Eα : Γ → α(Γ) be a unique composition
of edge-twists by Proposition 2.17. We will consider the inverse α−1 ∈ SV .
Since α−1α = Id, it suffices to show that α−1(Γ) ∼ Γ. Indeed, as seen in the
diagram in Figure 7b, the graph isomorphism α−1(Γ) is edge-twist equivalent
to Γ via α−1

∗ (Eα) and so α−1 ∈ Twist(Γ).
Finally, since the composition is associative, the set Twist(Γ) has a group

structure as claimed. □

Γ ∆1 ∆

Γ ∆2

Γ

α1

Eα1

α2

(α2)∗(Eα1 )

α2

Eα2

(a) Composition

Γ ∆ Γ

Γ α−1(Γ)

α

Eα

α−1

α−1
∗ (Eα)

α−1

(b) Inverse

Figure 7. A composition and inverse of two graph isomor-
phisms in Twist(Γ)

Remark 2.27. The group Twist(Γ) is isomorphic to the hom-set of the twist
equivalence groupoid Twist(G)(Γ,Γ) described in [2].
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One can check easily that the (graph) automorphism group Aut(Γ) of Γ is
a subgroup of Twist(Γ) so that

(2.3) [Twist(Γ) : Aut(Γ)] = #(JΓK ∩ [Γ]).

However, it is not necessarily normal in general.

Corollary 2.28. For a discretely rigid graph Γ, we have Twist(Γ) ∼= Aut(Γ).

Proof. The hypothesis implies that for each α ∈ Twist(Γ), we have α(Γ) = Γ,
i.e., α ∈ Aut(Γ) and therefore Twist(Γ) ∼= Aut(Γ). □

Example 2.29. Recall the graph Γ depicted in Figure 1. One can easily check
that

Aut(Γ) = ⟨α0 | α2
0⟩ ∼= Z2,

where α0 is given in Example 2.18. Then the group Twist(Γ) is generated by
graph isomorphisms

{α0, α1, . . . , α4} ⊂ SV

as depicted in Figure 8.
One can check that for each 0 ≤ i ≤ j ≤ 4,

(2.4) αiαj =


Id i = j;

α3α0 i = 0, j = 2;

α2α0 i = 0, j = 3;

αjαi otherwise

and therefore we have an isomorphism

Twist(Γ) ∼= Z2 × Z2 × ((Z2 × Z2)⋊ Z2) ,

where each factor from the left is generated by α1, α4, α2, α3 and α0.

2.4. The category G of CLTTF graphs

From now on, we mean edge-twists by edge-twists along outward edges in
the chunk tree unless mentioned otherwise.

Definition 2.30. Let G̃ be the category of CLTTF graphs defined as follows:

• The set of objects is G.
• The hom-set is freely generated by graph isomorphisms and edge-
twists.2

In other words, for any morphism f ∈ hom(Γ,∆) is a composition

f : Γ = Γ0
f1−→ Γ1

f2−→ · · · fn−→ Γn = ∆,

where fi : Γi−1 → Γi is either a graph isomorphism or an edge-twist.

Notice that the hom-set of the category G̃ is freely generated. In particular,
any ε ∈ Eout

JΓK with mJΓK(ε) even induces an endomorphism ε : Γ → Γ but it will

2The empty product will be regarded as the identity morphism.
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a
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m

e1
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C4
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a
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i
e
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f
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k

ℓ

m

e1

e2

e3

C4

C1

C2

C3

C0

a
d

i
e
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f

g

h
j

k

ℓ

m

e1

e2

e3

C4

C1

C2

C3

C0

a
d

i
e

b c

f

g

h
j

k

ℓ

m

e1

e2

e3

C4

C1

C2

C3

C0

a
d

i
e

b c

f

g

h
j

k

ℓ

m

e1

e2

e3

C4

C1

C2

C3

C0

α1:h↔f α2:j↔k

ε1=(e1,C1) ε2=(e2,C2)

ε4=(e3,C4) ε3=(e2,C3)

α4:b↔c α3:ℓ↔m

Figure 8. Examples of elements of Twist(Γ)

never be regarded as the identity. Furthermore, if mJΓK(ε) is odd, then there

are edge-twists ε : Γ → ∆ and ε : ∆ → Γ. However, in G̃, the composition ε2 is

not the identity. Therefore, we will denote each edge-twist in the category G̃

by ε instead of ε in order to avoid the confusion as above.
Now let E be the set of morphisms generated by edge-twists. Then by

localizing G̃ with respect to E, we obtain the category

G = G̃[E−1].

In other words, in the category G, we have the formal inverse ε−1 ∈ HomG(∆,Γ)

of each edge-twist ε ∈ HomG(Γ,∆). Hence any morphism f ∈ HomG(Γ,∆) is
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a composition

f : Γ = Γ0
f1−→ Γ1

f2−→ · · · fn−→ Γn = ∆,

where fi : Γi−1 → Γi is either

(1) a graph isomorphism αi,
(2) an edge-twist εi, or
(3) a formal inverse ε−1

i of an edge-twist εi.

We also define an equivalence relation on the hom-set of G generated by the
following three types of relations:

(1) for two graph isomorphisms α : Γ → Γ′ and β : Γ′ → Γ′′ whose
composition is γ : Γ → Γ′′, we declare the relation in homG(Γ,Γ

′′) as

βα ∼ γ.

(2) for each pull-back (or push-forward) diagram of graph isomorphisms
and edge-twists

Γ ∆

Γ′ ∆′,

α

ε ε′

α′

we declare the relation in homG(Γ,∆
′) as

(2.5) ε′α ∼ α′ε.

(3) for each pull-back (or push-forward) diagram of edge-twists

Γ Γ1

Γ2 Γ′,

ε1

ε2 ε2

ε1

we declare the relation in homG(Γ,Γ
′) as

(2.6) ε2ε1 ∼ ε1ε2.

Definition 2.31. The quotient category G/ ∼ will be denoted by G again.

G = G/ ∼=
(
G̃[E−1]

)
/ ∼ .

Let Γ = (V,E,m) ∈ G be a CLTTF graph. By the relations (2.5) and (2.6),
any isomorphism f ∈ HomG(Γ,∆) is a composition

f = Eα, E = E(η) =
∏

ε∈Eout
JΓK

εη(ε),(2.7)

where α is a graph isomorphism and η : Eout(ChJΓK) → Z is a function.
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Definition 2.32 (Even edge-twists). We say that a composition E = E(η) of
edge-twists in G is even if η(ε) is even for every ε ∈ Eout,1

JΓK .

A set DehnG(Γ) of morphisms is defined as the set of even compositions of
edge-twists.

Lemma 2.33. Let E : Γ → ∆ be a composition of edge-twists in G. Then
Γ = ∆ if and only if E ∈ DehnG(Γ).

In particular, DehnG(Γ) is a subset of AutG(Γ).

Proof. Assume that E = E(η) for some η : Eout
JΓK → Z. If E is not even, then

there exists ε ∈ Eout,1
JΓK with η(ε) ≡ 1 mod 2. Then the resulting graph never

be the same as Γ as seen in Lemma 2.10. Therefore E should be even.
Conversely, any even E obviously gives us an automorphism E : Γ → Γ. □

Corollary 2.34. The set DehnG(Γ) is a normal subgroup of AutG(Γ) and

isomorphic to the free abelian group Z#(Eout
JΓK).

Proof. By the above lemma, even edge-twists form a group, which is free abelian
by the relation (2.6) and normal in AutG(Γ) since the conjugate of an even
edge-twist by a graph automorphism is again even.

Finally, the group of even edge-twists is isomorphic to a free abelian group
generated by the set {

ε | ε ∈ Eout,0
JΓK

}
∪
{
ε2 | ε ∈ Eout,1

JΓK

}
,

which has one-to-one correspondence with Eout
JΓK and we are done. □

Proposition 2.35. Let α, E ∈ HomG(Γ,∆) such that α is a graph isomorphism
and E is a composition of edge-twists and their inverses. Suppose that α = E
in HomG(Γ,∆). Then Γ = ∆ and both α and E are the identities.

This proposition is evident since the only relations in (2.5) and (2.6) do not
cancel a graph isomorphism with a composition of edge-twists. However, we
will give a concrete proof later.

Under the aid of Proposition 2.35, we have the following theorem.

Theorem 2.36. For each isomorphism f ∈ HomG(Γ,∆), there is a unique
pair of a graph isomorphism α and a composition E of edge-twists or inverses
such that

f = Eα.

Proof. Suppose that f has two such expressions f = Eα = E ′α′. By pre- and
post-compositions of α′−1 and E−1, we have αα′−1 = E−1E ′, which should be
the identity by Proposition 2.35 and so α = α′ and E = E ′ as desired. □

As an immediate consequence, we have the following corollary.
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Corollary 2.37. Let Γ be a discretely rigid CLTTF graph. Then the auto-
morphism group AutG(Γ) is the semidirect product of the free abelian group
generated by edge-twists and the automorphism group of Γ:

AutG(Γ) ∼= DehnG(Γ)⋊Aut(Γ) ∼= Z#(Eout
JΓK) ⋊Aut(Γ).

Proof. Let f = Eα ∈ AutG(Γ) with a graph isomorphism α : Γ → ∆ and a
composition of edge-twists E : ∆ → Γ so that Γ ∼ ∆ and Γ ∼= ∆. Since Γ is
discretely rigid, Γ = ∆ and so both α and E are automorphisms. Therefore
AutG(Γ) is generated by Aut(Γ) and DehnG(Γ) by Lemma 2.33.

Finally, by Corollary 2.34, Proposition 2.35 and Theorem 2.36, we are done.
□

Example 2.38 (Special automorphism Φ). Let ∗Γ be the central vertex of
ChΓ. If ∗Γ is a chunk, then Φ ∈ AutG(Γ) will be defined to be the identity.

Suppose that ∗Γ = e = {s, t} is a separating edge. Let

{ε1, . . . , εN | εi = (e, Ci)} ⊂ Eout
Γ

be the subset of edges adjacent to ∗Γ of ChΓ. We define the composition

(2.8) E∗Γ
= ε1ε2 · · · εN

of all edge-twists ε1, . . . , εN .
If the label m(e) is even, then ∆ = Γ and so E is an automorphism and let

Φ = E∗Γ
.

Otherwise, notice that ∆ is obtained by interchanging the roles of vertices
s and t, and isomorphic to Γ. The precise graph isomorphism α∗Γ : Γ → ∆ is
given by

α∗Γ(v) =


v v ̸∈ {s, t};
t v = s;

s v = t.

Then we define Φ to be the composition E∗Γ
α∗Γ

: Γ → Γ.

In summary, the special automorphism Φ is defined as

(2.9) Φ :=


Id ∗Γ is a chunk;

E∗Γ ∗Γ is an even-labeled separating edge;

E∗Γ
α∗Γ

∗Γ is an odd-labeled separating edge.

Remark 2.39. Observe that if ∗Γ is an odd-labeled separating edge, then Γ can
not be discretely rigid. Conversely, for any discretely rigid CLTTF graph Γ, the
central vertex ∗Γ is either a chunk or an even-labeled separating edge.
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3. CLTTF Artin groups

3.1. CLTTF Artin groups and their isomorphisms

Let Γ = (V,E,m) be a CLTTF graph. An Artin group AΓ with a defining
graph Γ is given by the group presentation

(3.1) AΓ = ⟨V | (s, t;m(e)) = (t, s;m(e)) for each e = {s, t} ∈ E⟩,

where (s, t;m) is the alternating product of generators s and t of length m. For
example,

(s, t; 1) = s, (s, t; 2) = st, (s, t; 3) = sts, . . .

(t, s; 1) = t, (t, s; 2) = ts, (t, s; 3) = tst, . . .

For each e = {s, t} ∈ E, let us denote the subgroup G(e) generated by {s, t}.
Then the element xe = (s, t;m(e)) ∈ G(e) preserves the set {s, t} of generators
under the conjugation. That is,

x−1
e {s, t}xe = {s, t}

and we call xe the quasi-center of G(e) or simply the quasi-center for e. On
the other hand, the conjugation by xe preserves each generator s and t if and
only if m(e) is even. Therefore the element ze defined as

ze =

{
x2
e m(e) is odd;

xe m(e) is even,

generates the center of G(e).
According to the Crisp’s result in [2], there are four types of elementary

isomorphisms which generate every isomorphism between CLTTF Artin groups
as follows:

(1) An isomorphism α# : AΓ → A∆ defined as α#(v) = α(v) for each
v ∈ V , where (α : Γ → ∆) ∈ SV is a graph isomorphism. The induced
isomorphism α# will be called a graph isomorphism again.

(2) The global inversion ι : AΓ → AΓ defined as ι(v) = v−1 for each v ∈ V .
(3) An inner automorphism g# : AΓ → AΓ for some g ∈ AΓ defined as

g#(v) = g−1vg for each v ∈ V .
(4) A partial conjugation ε# : AΓ → A∆ for each decomposition ε =

(Γ1, e,Γ2) defined as

ε#(v) =

{
v v ∈ V1;

x−1
e vxe v ̸∈ V1,

where Γi = (Vi, Ei) and the graph ∆ is obtained by edge-twists with
respect to the decomposition ε.
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Remark 3.1. The above classification is slightly different from that described
in [2]. Indeed, all graphs are up to isomorphism in [2] and so all graph isomor-
phisms above should be translated into graph automorphisms. Actually, this
can be done by fixing a reference graph isomorphism Γ → ∆ for each ∆ ∼= Γ.

Remark 3.2. When Γ has a leaf, then the leaf can be inverted separately, called
the leaf inversion. However, by Assumption 2.1, there are no leaves in Γ.

Definition 3.3 (Rigidity of CLTTF Artin groups). A CLTTF Artin group AΓ

is said to be rigid if it has a unique defining graph Γ up to isomorphism.

Theorem 3.4 ([1]). A CLTTF Artin group AΓ is rigid if and only if so is Γ.

3.2. The category A of CLTTF Artin groups

Let us define the category A of CLTTF Artin groups, whose objects and
morphisms are as follows:

(1) Objects are Artin group AΓ for all CLTTF graphs Γ given by the group
presentation as described in (3.1).

(2) Morphisms are compositions of partial conjugations and graph isomor-
phisms.

Now let us consider the functor F̃ : G̃ → A as follows: for each CLTTF graph
Γ, we assign the Artin group AΓ

F̃(Γ) = AΓ

given by the group presentation as mentioned at the beginning. For each graph
isomorphism α and edge-twist ε in Hom

G̃
(Γ,∆), we assign a graph isomorphism

and a partial conjugation

F̃(α) = α# and F̃(ε) = ε#,

respectively. Then since the morphisms in G̃ are freely generated by graph

isomorphisms and edge-twists, the functor F̃ is well-defined.

Proposition 3.5. The functor F̃ : G̃ → A factors through the localization G

and the quotient category G. Namely, there exist unique functors up to natural
isomorphisms

F : G → A and F : G → A,

which fit into the following commutative diagram:

G̃

G = G̃[E−1] A

G = G/ ∼

F̃

∃F

∃F
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Proof. The existence and the uniqueness of the functor

F : G = G̃[E−1] → A

come from the universal property of the localized category since each edge-twist
maps to a partial conjugation which is an isomorphism in A.

Since G = G/ ∼ is the quotient category, by the universal property of the
quotient category, it suffices to prove that for pull-back diagrams

Γ ∆

Γ′ ∆′,

α

ε ε′

α

and

Γ Γ1

Γ2 Γ′,

ε1

ε2 ε′2

ε′1

the compositions of induced maps are identical in A. Namely,

ε′#α# = α#ε# and ε′2#ε1# = ε′1#ε2#

in IsomA(AΓ, A∆).
Let α, α′ and ε = (e, C), ε′ = (e′, C ′) be graph isomorphisms and edge-

twists that fit into a pull-back diagram. We denote by xe ∈ AΓ and xe′ ∈ A∆

the quasi-centers for e and e′, respectively. Let Vi(ε) and Vi(ε
′) be the sets

of vertices of Γi(ε) and Γi(ε
′), respectively. By definition of the pull-back or

push-forward, two subsets are canonically identified via α.
Then the maps ε′#α# and ε′#α# are defined as follows: for each v ∈ VΓ,

(ε′#α#)(v) =

{
α(v) α(v) ∈ V1(ε

′);

x−1
e′ α(v)xe′ α(v) ̸∈ V1(ε

′),

(α#ε#)(v) =

{
α(v) v ∈ V1(ε);

α#(x
−1
e vxe) v ̸∈ V1(ε).

We observe that since the restriction α| : V1(ε) → V1(ε
′) is a bijection, we

have

α(v) ̸∈ V1(ε
′) ⇐⇒ v ̸∈ V1(ε)

and since α#(xe) = xe′ ,

α#(x
−1
e vxe) = α#(xe)

−1α(v)α#(xe) = x−1
e′ α(v)xe′

as desired.
Let ε1 = (e1, C1), ε

′
1 = (e′1, C

′
1), ε2 = (e2, C2) and ε′2 = (e′2, C

′
2) be edge-

twists that fit into a pull-back diagram. Note that ε1 = ε′1 and ε2 = ε′2 in ChJΓK
and so Vi(εj) = Vi(ε

′
j) for each i, j = 1, 2. Moreover, we have identifications

xe1 = xe′1
and xe2 = xe′2

as words of V .
As seen in Remark 2.15, V \ V1(ε1) and V \ V1(ε2) are either disjoint or

nested. If (V \V1(ε1))∩ (V \V1(ε2)) = ∅, or equivalently, V1(ε1)∪V1(ε2) = V ,
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then for each v ∈ V ,

ε′2#ε1#(v) = ε′1#ε2#(v) =


v v ∈ V1(ε1) ∩ V1(ε2);

x−1
e1 vxe1 v ∈ V1(ε2) \ V1(ε1);

x−1
e2 vxe2 v ∈ V1(ε1) \ V1(ε2).

On the other hand, if V \ V1(ε1) and V \ V1(ε2) are nested, then we may
assume that (V \V1(ε2)) ⊂ (V \V1(ε1)), or equivalently, V1(ε1) ⊂ V1(ε2). Hence,
ε′2# preserves vertices of e1 and so xe1 as well. Therefore for each v ∈ V ,

(ε′2#ε1#)(v) =

{
v v ∈ V1(ε1);

ε′2#
(
x−1
e1 vxe1

)
v ̸∈ V1(ε1),

=


v v ∈ V1(ε1);

x−1
e1 vxe1 v ∈ V1(ε2) \ V1(ε1);

x−1
e1 ε′2#(v)xε1 v ̸∈ V1(ε2),

=


v v ∈ V1(ε1);

x−1
e1 vxe1 v ∈ V1(ε2) \ V1(ε1);

x−1
e1 x−1

e2 vxe2xe1 v ̸∈ V1(ε2).

On the other hand, we also have

(ε′1#ε2#)(v) =

{
v v ∈ V1(ε2);

ε′1#
(
x−1
e2 vxe2

)
v ̸∈ V1(ε2),

=


v v ∈ V1(ε1);

ε′1#(v) v ∈ V1(ε2) \ V1(ε1);

ε′1#
(
x−1
e2 vxe2

)
v ̸∈ V1(ε2),

=


v v ∈ V1(ε1);

x−1
e1 vxe1 v ∈ V1(ε2) \ V1(ε1);(
x−1
e1 x−1

e2 xe1

) (
x−1
e1 vxe1

) (
x−1
e1 xe2xe1

)
v ̸∈ V1(ε2).

Therefore,

(ε′1#ε2#)(v) =


v v ∈ V1(ε1);

x−1
e1 vxe1 v ∈ V1(ε2) \ V1(ε1);

x−1
e1 x−1

e2 vxe2xe1 v ̸∈ V1(ε2),

which completes the proof. □

Corollary 3.6. The functor F : G → A is full.

Proof. Every graph isomorphism and partial conjugation comes essentially
from a graph isomorphism and an edge-twist or its formal inverse, which is
again a morphism in G by definition. Hence the induced functor F : G → A is
full, and so is the functor F since G is the quotient category of G. □
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Recall Proposition 2.35, which claims that the only identity map can be both
a graph isomorphism and an edge-twist in G. Indeed, we insist a bit stronger
statement below which proves Proposition 2.35 as a direct consequence.

Proposition 3.7. Let α, E ∈ HomG(Γ,∆) such that α is a graph isomorphism
and E is a composition of edge-twists and their inverses. If F(α) = F(E) in
HomA(AΓ, A∆), then Γ = ∆ and both α and E are the identities.

Proof. Let us assume that E = E(η) for some η : Eout
JΓK → Z. Unless α is the

identity, the induced automorphism F(α) can not be the identity. Hence, it
suffices to prove that E is the identity.

We use the induction on Diam(ChΓ), which is always even. If Diam(ChΓ) = 0,
then there are no edges in Eout

JΓK and therefore E must be trivial. If Diam(ChΓ) =
2, then the center ∗Γ must be a separating edge e since the leaves in ChΓ are
chunks. As above, all edge-twists induce partial conjugations that fix both
s and t. Suppose that η(ε) = a ̸= 0 for some ε = (e, C) ∈ Eout

JΓK. Since

C = (VC , EC) is triangle-free and edge-separated, we can pick an edge f =
{v, w} ∈ EC such that e ∩ f = ∅. Then we have

F(α)({v, w}) = {α(v), α(w)} = {x−a
e vxa

e , x
−a
e wxa

e} = F(E)({v, w}),
which generate subgroups G(α(f)) and x−a

e G(f)xe. Unless f = α(f), these
two subgroups can not be the same since G(f) and G(α(f)) are not conjugate
to each other. Hence we have f = α(f) and so xa

e is in the normalizer of G(f),
which is a power of xf . This is a contradiction since G(e)∩G(f) is trivial and
so a must be 0.

Suppose that the assertion holds for every Γ with Diam(ChΓ) ≤ 2N . We
assume that

Diam(ChΓ) = 2N + 4.

Let Γ′ ⊂ Γ and ∆′ ⊂ ∆ be the subgraphs which are unions of chunks in Γ and
∆ within a distance (N + 1) (or N3) from the center ∗Γ and ∗∆, respectively.
Then since both α and E induce isomorphisms on (ChΓ, ∗Γ) → (Ch∆, ∗∆), their
restrictions

α| : Γ′ → ∆′ and E| : Γ′ → ∆′

are well-defined so that α| is a graph isomorphism and E| is a composition of
edge-twists again. Furthermore, they induce the same maps so that F(α|) =
F(E) in HomA(AΓ′ , A∆′) and therefore both α| and E| must be the identity by
the induction hypothesis.

Hence the only possibility for E is a composition of edge-twists involving
chunks which are farthest from the center ∗Γ. Suppose that there exists an
edge ε = (e, C) ∈ Eout

JΓK with η(ε) = a ̸= 0 involving a farthest chunk C. Then

the exactly same argument as above yields a contradiction and therefore E must
be trivial. □

3Since the vertices at the distance (N +1) from ∗Γ correspond to separating edges which

are already contained in chunks at the distance N from ∗Γ.
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Proof of Proposition 2.35. Let α, E be two morphisms satisfying the hypothe-
sis. If α = E , then F(α) = F(E) and so both α and E are the identities by
Proposition 3.7. □

Moreover, Proposition 3.7 also implies the faithfulness of the functor F as
follows:

Corollary 3.8. Let f, g ∈ HomG(Γ,∆). If F(f) = F(g) ∈ HomA(AΓ, A∆),
then f = g.

In other words, the functor F : G → A is faithful.

Proof. Let f, g ∈ HomG(Γ,∆). Then as observed in (2.7), f and g can be
expressed as compositions

f = Eα, E = E(η), g = E ′α′, E ′ = E(η′)

for some η, η′ : Eout
JΓK → Z. Then since F(f) = F(g), by pre-composition of

F(α)−1 and post-composition of F(E ′), we have

F(E ′−1fα−1) = F(E ′)−1F(f)F(α)−1 = F(E ′)−1F(g)F(α)−1 = F(E ′−1gα−1).

However, the left hand side is the induced map of edge-twists F(E ′−1fα−1) =
F(E ′−1E) while the right hand side is the induced map of graph isomorphisms
F(E ′−1gα−1) = F(α′α−1). Then by Proposition 3.7, we must have

E ′−1E = α′α−1 = Id ∈ HomG(Γ,Γ),

and therefore α′ = α and E ′ = E , which implies that f = g. □

In summary, we have the following theorem.

Theorem 3.9. The induced functor F : G → A is an equivalence of categories.
In particular, for each Γ, there is a group isomorphism

AutG(Γ) ∼= AutA(Γ).

Proof. In order to show that F is an equivalence, we will show (i) the essential
surjectivity, and (ii) the fully-faithfulness.

(i) By definition, every object in A is an Artin group presentation for a
CLTTF graph and every morphism in A is an isomorphism. Hence the essential
surjectivity is obvious.

(ii) The fully-faithfulness comes from Corollaries 3.6 and 3.8, and we are
done. □

Before closing this section, we will prove the equivalence of categories be-
tween G and the subcategory of the groupoid defined in [2]. Let Iso be the
category of edge-separated CLTTF graphs up to isomorphism whose morphisms
are the set of all group isomorphisms AΓ → A′

Γ.
Then by [2, Theorem 1], the morphisms in Iso are generated by graph

automorphisms, leaf and global inversions, inner automorphisms, and partial
conjugations.
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We define the subcategory Iso0 of Iso whose morphisms are generated by
graph automorphisms and partial conjugations. Then we will show an equiva-
lence between two categories G and Iso.

For each isomorphism class [Γ], we fix a representative Γ0 ∈ [Γ]. Moreover,
for each ∆ ∈ [Γ], we also fix a graph isomorphism α∆ : Γ0 → ∆. Obviously,
α∆ = Id if and only if ∆ represents its isomorphism class.

Now we define a functor [·] : G → Iso0 as follows: For each CLTTF graph Γ,

[·] : Γ 7→ [Γ],

where [Γ] is the graph isomorphism class of Γ.
For each graph isomorphism α : Γ → ∆, we have a graph automorphism

α−1
∆ ααΓ : Γ0 → Γ0, which induces an isomorphism

[α] := (α−1
∆ ααΓ)# : AΓ0 → AΓ0 .

Here Γ0 is the chosen representative of [Γ] = [∆].
For each edge-twist ε : Γ → ∆, we have a composition α−1

∆ εαΓ : Γ0 → ∆0,
which induces an isomorphism

[ε] := (α∆)
−1
# ε#(αΓ)# : AΓ0

→ A∆0
.

Here Γ0 and ∆0 are the chosen representative of [Γ] and [∆], respectively.

Theorem 3.10. The functor [·] : G → Iso0 is an equivalence of categories.

Proof. By definition of Iso0, Theorem 1 in [2] and Theorem 3.9, the functor
[·] is well-defined, surjective, and full. The faithfulness follows obviously from
Proposition 3.7 as well. □

4. The automorphism group Aut(AΓ)

In this section, we will provide finite presentations for both Aut(AΓ) and
Out(AΓ). To this end, we first analyze the automorphism group Aut(AΓ),
which is generated by AutA(AΓ), the inner automorphism group Inn(AΓ) and
the global inversion ι : AΓ → AΓ, and define a pairing between elements in
Twist(Γ) called a twisted intersection product.

4.1. Preliminaries

4.1.1. Positive automorphisms. For each f ∈ Aut(AΓ), let us consider the
induced map H1(f) on the abelianization H1(AΓ)

H1(f) : H1(AΓ) → H1(AΓ),

which is either a permutation of vertices or a composition of the global inversion
and a permutation of vertices. Namely, there exists sgn(f) = ±1 such that for
each v ∈ V ,

H1(f)([v]) = sgn(f)[w] ∈ H1(AΓ)
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for some w ∈ VΓ. We say that f is positive if sgn(f) = 1. Then sgn defines a
group homomorphism

sgn : Aut(AΓ) → Z2,

whose kernel is the subgroup of positive automorphisms and denoted by
Aut+(AΓ) := ker(sgn). Then

Inn(AΓ)◁Aut+(AΓ)◁Aut(AΓ)

and so we define the group Out+(AΓ) as the quotient

Out+(AΓ) := Aut+(AΓ)
/
Inn(AΓ).

Obviously, the global inversion (ι : AΓ → AΓ) ∈ Aut(AΓ) is not contained in
Aut+(AΓ) and acts on inner automorphisms, partial conjugations and graph
isomorphisms by conjugation. More precisely, for each isomorphism α#, ε# :
AΓ → A∆ coming from a graph isomorphism α and an edge-twist ε, or inner
automorphism g# : AΓ → AΓ, we have

α#ι = ια#, ε−1
# ι = ιε#, g−1

# ι = ιg#,

where g = vk · · · v1 is the reverse of g = v1 · · · vk with vi ∈ V . Therefore the
following lemmas are immediate consequences.

Lemma 4.1. There is a commutative diagram with exact rows and columns

1 1

Inn(AΓ) Inn(AΓ)

1 Aut+(AΓ) Aut(AΓ) Z2 1

1 Out+(AΓ) Out(AΓ) Z2 1

1 1

sgn

sgn

where the group Z2
∼= ⟨ι | ι2⟩ is generated by the global inversion ι. Therefore

the rows split and

Aut(AΓ) ∼= Aut+(AΓ)⋊ Z2, Out(AΓ) ∼= Out+(AΓ)⋊ Z2.

Lemma 4.2. An automorphism f is in Aut+(AΓ) if and only if it is a compo-
sition of inner automorphisms, partial conjugations and graph isomorphisms.

In particular, we have the subgroup AutA(AΓ) ⊂ Aut+(AΓ) consisting of
compositions of partial conjugations and graph isomorphisms.
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4.1.2. The special automorphism. Now recall the special automorphism Φ ∈
AutG(Γ) defined in Example 2.38. We claim that the induced map Φ# =
F(Φ) ∈ AutA(AΓ) is either the identity or the inner automorphism as follows:

Φ# =

{
Id if ∗Γ is a chunk;

xe# if ∗Γ is a separating edge e.

If ∗Γ is a chunk, then Φ ∈ AutG(Γ) is the identity and so is Φ#. Otherwise,
assume that ∗Γ is a separating edge e = {s, t}. By definition of Φ, either

Φ = E∗Γ
or Φ = E∗Γ

α∗Γ

according to the parity of the label m(e). Namely, if m(e) is even, then

Φ#(v) =


x−1
e vxe v ̸∈ {s, t};

s v = s;

t v = t,

which is the inner automorphism xe# since s = x−1
e sxe and t = x−1

e txe.
If m(e) is odd, then since Φ is a composition with a graph isomorphism α

that interchanges s and t, we have

Φ#(v) =


x−1
e vxe v ̸∈ {s, t};

t v = s;

s v = t

and therefore Φ# = xe# again since s = x−1
e txe and t = x−1

e sxe.
For a sake of convenience, the subgroup generated by Φ# will be denoted

by ZΓ. Unless Φ# is trivial, it is of infinite order since the Artin group AΓ is
centerless.

ZΓ = ⟨Φ#⟩ ∼=

{
1 ∗Γ is a chunk;

Z ∗Γ is a separating edge.

Proposition 4.3. For each AΓ ∈ A,

Inn(AΓ) ∩AutA(AΓ) = ZΓ.

Proof. By the above discussion, the subgroup ZΓ ⊂ Inn(AΓ) ∩AutA(AΓ).
Suppose that ϕ ∈ Inn(AΓ) ∩AutA(AΓ). Then by Theorems 2.36 and 3.9,

ϕ = g# = E#α#

for some g ∈ AΓ, graph isomorphism α : Γ → ∆ and composition of edge-twists
E : ∆ → Γ.

Let ∗Γ be the central vertex of the chunk tree ChΓ. If ∗Γ is a chunk C =
(VC , EC), then D = (VD, ED) := α(C) ⊂ ∆ is isomorphic to C. Moreover,
for any edge-twist ε ∈ Eout(Ch∆), the set V2(ε) contains no vertices in D.
Therefore for each v ∈ VC ,

ϕ(v) = g−1vg = E#(α(v)) = α(v) ∈ VD ⊂ V,
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which implies that the full subgraph defined by VD in Γ is isomorphic to C.
In other words, the graph isomorphism α on C is a graph automorphism and
therefore if we restrict ϕ to the Artin group AC , then we have

ϕ|AC
= (α|C)∗ : AC → AC .

Since the graph automorphism α|C is of finite order, we have

Id = (α|C)N# = (g#|AC
)N = (gN )#|AC

for some N ≥ 1. This means that gN is contained in the centralizer CAΓ(AC)
of AC in AΓ, which is trivial. Since AΓ is torsion-free, g must be trivial.

If ∗Γ is a separating edge e = {s, t}, then α({s, t}) = {s, t} is the central
separating edge in Ch∆. As above, both vertices s and t are not contained in
V2(ε) of any edge-twist ε ∈ Eout

∆ . Therefore, for v ∈ {s, t}, we have

ϕ(v) = g−1vg = E#(α(v)) = α(v) ∈ {s, t} ⊂ V,

and either {
α(s) = s;

α(t) = t,
or

{
α(s) = t;

α(t) = s.

Since g normalizes G(e), it is a power of xe as proved in [6] and we are
done. □

Corollary 4.4. The group ZΓ is contained in the center of AutA(AΓ).

Proof. Since there is nothing to prove when ∗Γ is a chunk, we assume that ∗Γ
is a separating edge e = {s, t}.

For each ϕ = E#α# ∈ AutA(AΓ), it suffices to prove that Φ#ϕ = ϕΦ#.
As seen in the proof of Proposition 4.3, for each v ∈ {s, t}, we have ϕ(v) =
α(v) ∈ V , where α on e = {s, t} is a graph automorphism. Therefore ϕ(xe) =
α#(xe) = xe, and so for any v ∈ V ,

(Φ#ϕ)(v) = x−1
e ϕ(v)xe = ϕ(x−1

e vxe) = (ϕΦ#)(v),

which completes the proof. □

In particular, the group ZΓ is a normal subgroup of AutA(AΓ). Hence, there
is a commutative diagram with exact rows as follows:

(4.1)

1 ZΓ AutA(AΓ) AutA(AΓ)
/
ZΓ 1

1 Inn(AΓ) Aut+(AΓ) Out+(AΓ) 1.

Ψ

The right vertical arrow Ψ is the induced map of the inclusion AutA(AΓ) →
Aut+(AΓ).
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Theorem 4.5. There is an isomorphism

Ψ : AutA(AΓ)
/
ZΓ

∼= Out+(AΓ).

Therefore, by Lemma 4.1,

Out(AΓ) ∼=
(
AutA(AΓ)

/
ZΓ

)
⋊ Z2.

Proof. By Lemma 4.2, any automorphism in Aut+(AΓ) is a composition of
inner automorphisms, partial conjugations and graph isomorphisms. Therefore,
for each [ϕ] ∈ Out+(AΓ), we have a representative ϕ ∈ Aut+(AΓ) which is
a composition of partial conjugations and graph isomorphisms. However, by
definition of AutA(AΓ), the map ϕ is also contained in AutA(AΓ) and therefore
Ψ is surjective.

Suppose that ker(Ψ) is nontrivial. Then there exists ϕ ∈ Inn(AΓ)∩AutA(AΓ)
= ZΓ, which is trivial in AutA(AΓ)

/
ZΓ as desired. □

Unfortunately, the row exact sequences in (4.1) do not split in general. How-
ever, when ∗Γ is a chunk, then the group ZΓ is trivial and therefore

Out+(AΓ) ∼= AutA(AΓ) ⊂ Aut+(AΓ).

Corollary 4.6. If ∗Γ is a chunk, then

Aut(AΓ) ∼= Inn(AΓ)⋊Out(AΓ), Out(AΓ) ∼= AutA(AΓ)⋊ Z2.

In particular, if Γ is furthermore discretely rigid, then we have the following
corollary.

Corollary 4.7. Let Γ be a discretely rigid CLTTF graph such that ∗Γ is a
chunk. Then

Aut(AΓ) ∼= Inn(AΓ)⋊
((

Z#(Eout
JΓK) ⋊Aut(Γ)

)
⋊ Z2

)
,

Out(AΓ) ∼=
(
Z#(Eout

JΓK) ⋊Aut(Γ)
)
⋊ Z2.

Proof. This is a combination of Corollaries 2.37, 4.6 and Theorem 3.9. □

4.1.3. Twisted intersection product. Let us define the twisted intersection prod-
uct (α, β) = E(ηα,β) as a composition of edge-twists in G, where

ηα,β(ε) =

{
ηα(ε) · ηβ(ε) ε ∈ Eout,1

JΓK ;

0 otherwise.

Indeed, this product captures the carry-over of the sum of ηα and α∗(ηβ)
in binary arithmetic that we may lose since each edge-twist is involutive in
Twist(Γ).

Note that the twisted intersection product is not necessarily commutative.
Moreover, it satisfies the following properties.

Lemma 4.8. For α1, α2, α3 ∈ Twist(Γ), we have

(α1, α2α3) · (α1)∗(α2, α3) = (α1α2, α3) · (α1, α2).
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Proof. For each i = 1, 2, 3, let αi : Γ → ∆i and E i = E(ηi) : ∆i → Γ be the

unique composition of edge-twists. Then for each ε ∈ Eout,1
JΓK , both count the

carry-over in the following sums

η1(ε) + (α1)∗(η2(ε)) + (α1α2)∗(η3(ε))

= η1(ε) · (α1)∗(η2(ε)) + η1(ε) · (α1α2)∗(η3(ε)) + (α1)∗(η2(ε)) · (α1α2)∗(η3(ε))

by regarding them as binary digits. □

Lemma 4.9. Let α0 ∈ Aut(Γ) and α1, α2 ∈ Twist(Γ). Then the following
holds:

(1) (α0, α1) = (α1, α0) = Id,
(2) (α1, α2α0) = (α1, α2),
(3) (α0α1, α2) = (α0)∗(α1, α2),
(4) (α1α0, α2) = (α1, α0α2).

Proof. (1) This is obvious since α0 : Γ → Γ.
(2)–(4) These are immediate corollary of (1) and Lemma 4.8. □

Example 4.10. Recall the generators α0, . . . , α4 for Twist(Γ) as described in
Example 2.29.

Let α and β be elements in Twist(Γ). By relation in (2.4), there exist two
sequences (i0, . . . , i4) and (j0, . . . , j4) in {0, 1} such that

α = αi1
1 αi2

2 αi3
3 αi4

4 αi0
0 , E = εi11 εi22 εi33 εi44 : Γ → α(Γ),

α′ = αj1
1 αj2

2 αj3
3 αj4

4 αj0
0 , E ′ = εj11 εj22 εj33 εj44 : Γ → α′(Γ).

Then since α1, . . . , α4 preserve ChJΓK but α0 interchanges ε2 and ε3, we have

α∗(E ′) =

{
εj11 εj22 εj33 εj44 i0 = 0;

εj11 εj32 εj23 εj44 i0 = 1,
(α, α′) =

{
εi1j11 εi2j22 εi3j33 εi4j44 i0 = 0;

εi1j11 εi2j32 εi3j23 εi4j44 i0 = 1.

4.2. Group presentation for Aut(AΓ)

Let us define the sets:

S = even edge-twists and twist isomorphisms

=
{
ε
∣∣∣ ε ∈ Eout,0

JΓK

}
∪
{
ε2

∣∣∣ ε ∈ Eout,1
JΓK

}
∪ {α̃ | α ∈ Twist(Γ)} ,

R0 = relations coming from (the action on) Inn(AΓ)

= {(s, t;m(e)) = (t, s;m(e)) | e = {s, t} ∈ E}
∪{εv=(ε#(v))ε | v ∈ V, ε ∈ S(Γ)} ∪ {ε2v=(ε2#(v))ε | v ∈ V, ε2 ∈ S(Γ)}
∪{α̃v=(α̃#(v))α̃ | v ∈ V, α̃ ∈ S(Γ)} ∪ {ιv=v−1ι | v ∈ V },

R1 = even edge-twist moves commute with each other

=
{
εε′ = ε′ε

∣∣∣ ε, ε′ ∈ Eout,0
JΓK

}
∪
{
ε2ε′2 = ε′2ε2

∣∣∣ ε, ε′ ∈ Eout,1
JΓK

}
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∪
{
εε′2 = ε′2ε

∣∣∣ ε ∈ Eout,0
JΓK , ε′ ∈ Eout,1

JΓK

}
,

R2 = twist isomorphisms conjugate even edge-twist moves to their

push-forwards

=
{
α̃ε = α∗(ε)α̃

∣∣∣ α ∈ Twist(Γ), ε ∈ Eout,0
JΓK

}
∪
{
α̃ε2 = α∗(ε)

2α̃
∣∣∣ α ∈ Twist(Γ), ε ∈ Eout,1

JΓK

}
,

R3 = twisted intersection products of products of twist isomorphisms

=
{
α̃β̃ = (α, β)2α̃β

∣∣∣ α, β ∈ Twist(Γ)
}
,

R4 = actions of the global inversion

=
{
ι2
}
∪
{
α̃ι = E2

αια̃
∣∣ α ∈ Twist(Γ)

}
∪
{
ειει | ε ∈ Eout,0

JΓK

}
∪
{
ε2ιε2ι | ε ∈ Eout,1

JΓK

}
,

R̃Φ = the special automorphism in Aut(AΓ)

=


∅ ∗Γ is a chunk;

{E∗Γ
= xe} ∗Γ is an even-labeled separating edge e;

{α̃∗Γ
= xe} ∗Γ is an odd-labeled separating edge e,

and

RΦ = the special automorphism in Out(AΓ)

=


∅ ∗Γ is a chunk;

{E∗Γ} ∗Γ is an even-labeled separating edge;

{α̃∗Γ} ∗Γ is an odd-labeled separating edge.

Recall (2.8) and (2.9) for the definitions of E∗Γ
and Φ, respectively. If ∗Γ is

an even-labeled separating edge, then Φ = E∗Γ
∈ DehnG(Γ) is a word in S.

Otherwise, if ∗Γ is an odd-labeled separating edge, then Φ = E∗Γα∗Γ will be
mapped to α∗Γ via the map AutG(Γ) → Twist(Γ). Hence it corresponds to
α̃∗Γ

∈ S.
Here, we have the main theorem of the paper.

Theorem 4.11. Let Γ = (V,E,m) be a CLTTF graph. Then the automorphism
group Aut(AΓ) and outer automorphism group admit the following finite group
presentations:

Aut(AΓ) ∼=
〈
V, S, ι

∣∣∣ R0, R1, R2, R3, R4, R̃Φ

〉
,

Out(AΓ) ∼=
〈
V, S, ι

∣∣∣ R0, R1, R2, R3, R4, R̃Φ, V
〉

∼= ⟨S, ι | R1, R2, R3, R4, RΦ⟩ .
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In order to prove this theorem, we first consider a short exact sequence

(4.2) 1 DehnG(Γ) AutG(Γ) Twist(Γ) 1,

where the quotient map

AutG(Γ) Twist(Γ)

Eα α,

is just a projection, which is well-defined since E : ∆ → Γ if α : Γ → ∆ and
whose kernel is precisely DehnG(Γ).

Now we want to provide a group presentation for AutG(Γ) ∼= AutA(AΓ) by
using the following proposition whose proof is elementary and will be omitted.

Proposition 4.12. Let N and Q be groups admitting presentations

N = ⟨SN | RN ⟩, Q = ⟨SQ | RQ⟩,

which fit into the short exact sequence

1 N G Q 1.i π

Let s : F (SQ) → F (SN ) be a group homomorphism between free groups F (SQ)
and F (SN ) on SQ and SN which makes the following diagram commutative:

F (SQ) F (SN )

Q G N.

s

[·] [·]

π i

Here the vertical maps are the canonical surjections. Then G admits a group
presentation

G ∼= ⟨SN ∪ s(SQ) | RN ∪RC ∪ R̃Q⟩,
where

RC = {s(t)gs(t)−1w−1 | g ∈ SN , t ∈ SQ, w ∈ N, [s(t)gs(t)−1] = i(w) ∈ G},

R̃Q = {s(r)h−1 | r ∈ RQ, h ∈ N, [s(r)] = i(h) ∈ G}.

We want to use the short exact sequence in (4.2) and the proposition above
to obtain a group presentation of AutG(Γ).

For each (α : Γ → ∆) ∈ Twist(Γ), there is a unique composition of edge-

twists Eα = E(ηα) : ∆ → Γ for some ηα : Eout,1
JΓK → {0, 1} by Proposition 2.17.

Let ηα : Eout
JΓK → Z be a function defined as

ηα(ε) =

{
1 ε ∈ Eout,1

JΓK , ηα(ε) = 1;

0 otherwise.

Then we have a lift α̃ := Eαα : Γ → Γ of α, where Eα := E(ηα).
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For each g ∈ DehnG(Γ), the conjugate of g by α̃ is then

α̃gα̃−1 = (Eαα)g(α−1E−1
α ) = Eαα∗(g)E−1

α = α∗(g).

For α, β ∈ Twist(Γ), we have the following:

α̃β̃ = EααEββ = Eαα∗(Eβ)αβ and α̃β = Eαβ(αβ),

which coincide in Twist(Γ) and so

Eαα∗(Eβ)E−1
αβ

is a composition of even edge-twists. Indeed, this is exactly the same as (α, β)2

by the meaning of the twisted intersection product as mentioned earlier. There-
fore we have

Eαα∗(Eβ)E−1
αβ = (α, β)2 ∈ DehnG(Γ), or equivalently, α̃β̃ = (α, β)2α̃β.

Proposition 4.13. The groups AutA(AΓ) and AutA(AΓ)/ZΓ admit the finite
group presentations

AutA(AΓ) ∼= ⟨S | R1, R2, R3⟩, AutA(AΓ)/ZΓ
∼= ⟨S | R1, R2, R3, RΦ⟩.

Proof. We use Proposition 4.12 on (4.2). Since DehnG(Γ) is a free abelian
group generated by even edge-twists, the group AutA(AΓ) is generated by the

set S. Moreover the sets R1, R2 and R3 correspond to RN , RC and R̃Q in
Proposition 4.12 and the generator for ZΓ corresponds to the element in RΦ if
RΦ ̸= ∅. Therefore we are done. □

Proof of Theorem 4.11. We first find the group presentation for Out(AΓ),
which is isomorphic to (AutA(AΓ)/ZΓ) ⋊ Z2 by Theorem 4.5. Therefore we
need to justify relations in R4.

Since ι is an involution, ι2 is the identity. Let ε = (e = {s, t}, C) be an edge
in Eout

Γ . For each v ∈ V ,

ιε#(v) =

{
ι(v) v ∈ V1(ε);

ι(x−1
e vxe) v ̸∈ V1(ε),

=

{
v v ∈ V1(ε);

xe
−1v−1xe v ̸∈ V1(ε),

where xe is the reverse of xe and identical to xe in AΓ. Therefore,

ιε#(v) = (ε#)
−1(v−1) = ε−1

# ι(v)

and so the second or third type of relations follows. We also note that for each
ε1, ε2 ∈ Eout

Γ ,

(4.3) ι(ε1)#(ε2)# = (ε1)
−1
# (ε2)

−1
# ι.
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In order to check if the relation α̃ι = E2
αια̃ holds, let us regard α̃ as the

composition α̃ = Eαα, where α : Γ → ∆ is a graph isomorphism for some ∆
and Eα : ∆ → Γ is a composition of edge-twists. Then by (4.3)

(ια̃)(v) = ι(Eα)#α(v) = (Eα)−1
# (ια)(v) = (Eα)−1

# (αι)(v)

for each v ∈ V . Hence ια̃ = (Eα)−2
# α̃ι, or equivalently, (Eα)2#ια̃ = α̃ι.

Finally, we use Proposition 4.12 again to the short exact sequence between
automorphism groups:

1 Inn(AΓ) Aut(AΓ) Out(AΓ) 1.

Since Inn(AΓ) ∼= AΓ, we may use the group presentation for AΓ. Therefore,
the group Aut(AΓ) is generated by two sets V and S defined earlier. The
relations are consisting of three types of relations such that (i) the original
relations in AΓ, (ii) the action of Out(AΓ) on AΓ

∼= Inn(AΓ), and (iii) lifts of
relations in Out(AΓ).

The generating set is obvious. The set R0 consists of relations in AΓ and
relations corresponding to the action of Out(AΓ) on AΓ, where the latter rela-
tions are obvious by definition. Moreover, all relations but RΦ in Out(AΓ) hold
in Aut(Γ) as well and the can be lifted without any modification. However,
the relation RΦ may not hold in Aut(Γ) when ∗Γ is a separating edge. In this
case, we should identify E∗Γ

or α̃∗Γ
with the inner automorphism (xe)#, which

is just xe in our presentation. This completes the proof. □

4.3. Examples

We will compute (outer) automorphism groups for various CLTTF graphs.

4.3.1. Discretely rigid with the central chunk. As seen earlier, the following
CLTTF graph Γ is not rigid but discretely rigid:

Γ =

a

4

b

h

3

c

g

3

d

f

4

e

4

6

4

6

4

6

ChΓ =

a

4

b 6 c

3

h4 h

3

c

h

3

c 6 d

3

g4 g

3

d

g

3

d 6 e

4

f4

C1 e1 C = ∗Γ e2 C2

Then in the chunk tree ChΓ, the central vertex ∗Γ is a chunk C = (VC , EC)
with VC = {c, d, g, h} and there are two outward edges

ε1 = (e1, C1) and ε2 = (e2, C2),
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where C1 and C2 are induced subgraphs of Γ with VC1
= {a, b, c, h} and VC2

=
{d, e, f, g}. Moreover Aut(Γ) = ⟨α | α2⟩, where α : Γ → Γ is the obvious
horizontal reflection that interchanges edge-twists ε1 and ε2. Therefore by
Corollary 4.6,

Aut(AΓ) ∼= Inn(AΓ)⋊AutA(AΓ) ∼= AΓ ⋊
((
⟨ε1, ε2⟩⋊ ⟨α | α2⟩

)
⋊ ⟨ι | ι2⟩

)
.

The followings are precise relations:

• Inner automorphism group relation and the action of Out(AΓ) on
Inn(AΓ)

R0 = {(s, t;m(e)) = (t, s;m(e)) | e = {s, t} ∈ E} ∪ {αv = (α(v))α | v ∈ V }
∪{εiv = (εi(v))εi | v ∈ V, i = 1, 2} ∪ {ιv = v−1ι | v ∈ V }.

• Commutative relations between ε1 and ε2

R1 = {ε1ε2 = ε2ε1}.

• The action of α on ⟨ε1, ε2⟩ and involutivity

R2 = {αε1 = ε2α}, R3 = {α2}.

• The action of ι on AutA(Γ)

R4 = {ι2, ια = αι} ∪ {ιεi = ε−1
i ι | i = 1, 2}.

Therefore we have the following group presentations:

Aut(AΓ) = ⟨V, ε1, ε2, α, ι | R0, R1, R2, R3, R4⟩ ,
Out(AΓ) = ⟨ε1, ε2, α, ι | R1, R2, R3, R4⟩ .

4.3.2. Discretely non-rigid with the central separating edge. The CLTTF graph
Γ below is rigid but not discretely rigid with the central separating edge e =
{c, f}:

Γ =

a

4

b

f

3

c

e

4

d

4

6

6

6

ChΓ =

a

4

b 6 c

3

f4 f

3

c

f

3

c 6 d

3

e4

C1 e = ∗Γ C2

There are two outward edges in Eout
Γ

ε1 = (e1, C1) and ε2 = (e2, C2)

and so we have four CLTTF graphs edge-twist equivalent to Γ

Γ0 := Γ, Γ1 := ε1(Γ), Γ2 := ε2(Γ), and Γ3 := ε1ε2(Γ),
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which are all isomorphic to Γ. Moreover, since the group of graph automor-
phisms is trivial, each edge-twist equivalent graph Γi has the unique graph
isomorphism αi, where

α0 = IdV , α1(v) =



f v = c;

e v = d;

d v = e;

c v = f ;

v v ∈ {a, b},

α2(v) =


e v = d;

d v = e;

v v ̸= d, e,

α3 = α1α2.

Therefore

Twist(Γ) =
〈
α1, α2 | α1α2 = α2α1, α

2
1, α

2
2

〉 ∼= Z2 × Z2.

Since both α1 and α2 act trivially on ChΓ, we have

(αi)∗(εj) = εj for all 1 ≤ i, j ≤ 2

and so the twisted intersection is then defined as follows: for i = 1, 2,

(αi, αi) = (αi, α3) = (α3, αi) = εi, (α1, α2) = (α2, α1) = Id, (α3, α3) = ε1ε2.

Now we compute the group AutA(AΓ), which is generated by

ε21, ε
2
2, α̃1, α̃2, α̃3.

The sets of relations are as follows:

R1 = {ε21ε22 = ε22ε
2
1},

R2 = {α̃iε
2
j = ε2j α̃i | 1 ≤ i ≤ 3, 1 ≤ j ≤ 2},

R3 = {α̃2
i = ε2i | 1 ≤ i ≤ 2} ∪ {α̃2

3 = ε21ε
2
2}

∪{α̃1α̃2 = α̃2α̃1 = α̃3, α̃1α̃3 = α̃3α̃1 = ε21α̃2, α̃2α̃3 = α̃3α̃2 = ε21α̃1}.

Hence one can easily see that

AutA(Γ) =
〈
ε21, ε

2
2, α̃1, α̃2, α̃3 | R1, R2, R3

〉
= ⟨α̃1, α̃2 | α̃1α̃2 = α̃2α̃1⟩ ∼= Z2.

Moreover, since the central element ∗Γ is an odd-labeled edge, we have the
nontrivial subgroup ZΓ generated by E∗Γ

α∗Γ
, where

E∗Γ
= ε1ε2 and α∗Γ

= α1α2.

That is, in the above group presentation, the generator for ZΓ corresponds to
α̃1α̃2 and

AutA(AΓ)/ZΓ
∼=

〈
ε21, ε

2
2, α̃1, α̃2, α̃3 | R1, R2, R3, RΦ

〉
∼= ⟨α̃1, α̃2 | α̃1α̃2 = α̃2α̃1, α̃1α̃2⟩ ∼= Z,
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where RΦ = {ε1ε2}. We have the following commutative diagram with exact
rows:

(4.4)

1 ZΓ AutA(AΓ) AutA(AΓ)/ZΓ 1

1 ⟨α̃1α̃2⟩ ⟨α̃1, α̃2⟩ ⟨α̃1⟩ 1.

∼= ∼= ∼=
α̃2 7→α̃−1

1

Therefore by Theorem 4.5, we have

Out(AΓ) ∼= (AutA(AΓ)/ZΓ)⋊ Z2
∼= ⟨α̃1, ι | ια̃1ι = α̃−1

1 ⟩ ∼= Z ⋊ Z2,

where the last relation comes from

α̃1ι = ε21ια̃1 ⇐⇒ α̃1ι = α̃2
1ια̃1 ⇐⇒ ια̃1ι = α̃−1

1 .

Moreover, the below row in (4.4) splits and so we may regard Out(AΓ) as
a subgroup of Aut(AΓ) so that Aut(AΓ) ∼= Inn(AΓ) ⋊ Out(AΓ). Hence the
automorphism group Aut(AΓ) admits the following presentation:

Aut(AΓ) ∼=
〈
V, α̃1, ι | R0, ια̃1ι = α̃−1

1

〉
,

where

R0={(s, t;m(e))=(t, s;m(e)) | e={s, t} ∈ E} ∪ {α̃1v=(α̃1)#(v)α̃1, ιv=v−1ι}
and

(α̃1)#(v) =



f v = c;

e v = d;

d v = e;

c v = f ;

(cfc)−1v(cfc) v ∈ {a, b}.

4.3.3. Discretely non-rigid with the central chunk. The CLTTF graph below is
discretely non-rigid and the center ∗Γ in the chunk tree is a chunk C0 as seen
earlier.

Γ =

a
d

i
e

b c

f

g

h
j

k

ℓ

m

e1

e2

e3

C4

C1

C2

C3

C0

Therefore by Corollary 4.6, Aut(AΓ) ∼= Inn(AΓ) ⋊ (AutA(AΓ)⋊ Z2). Re-
call the generating set {α0, . . . , α4} for Twist(Γ) and edge-twists ε1, . . . , ε4 as
described in Example 2.29 so that εiαi : Γ → Γ for each 1 ≤ i ≤ 4.
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The set S of generators for AutA(AΓ) is then

S = {α̃0, . . . , α̃4, ε
2
1, . . . , ε

2
4}

and there are three types of relations

R1 = {ε2i ε2j = ε2jε
2
i | 1 ≤ i, j ≤ 4},

R2 = {α̃iε
2
j = ε2j α̃i | 1 ≤ i, j ≤ 4} ∪ {α̃0ε

2
i = ε2i α̃0 | i = 1, 4}

∪ {α̃0ε
2
1 = ε22α̃0, α̃0ε

2
2 = ε21α̃0},

R3 = {α̃2
0} ∪ {α̃2

i = ε2i | 1 ≤ i ≤ 4} ∪ {α̃iα̃j = α̃jα̃i | 1 ≤ i, j ≤ 4}
∪{α̃0α̃i = α̃iα̃0 | i = 1, 4} ∪ {α̃0α̃2 = α̃3α̃0, α̃0α̃3 = α̃2α̃0}

so that

AutA(AΓ) ∼= ⟨α̃0, . . . , α̃4, ε
2
1, . . . , ε

2
4 | R1, R2, R3⟩.

Now the action of ι gives us relations in Out(AΓ) as follows:

R4 = {ι2} ∪ {ια̃0 = α̃0ι} ∪ {α̃iι = ε2i ια̃i | 1 ≤ i ≤ 4} ∪ {εiιεiι | 1 ≤ i ≤ 4}

and we have a group presentation

Out(AΓ) =
〈
α̃0, . . . , α̃4, ε

2
1, . . . , ε

2
4, ι

∣∣ R1, R2, R3, R4

〉
.

One can reduce this presentation so that

AutA(AΓ) ∼= (⟨α̃1⟩ × ⟨α̃2⟩ × ⟨α̃3⟩ × ⟨α̃4⟩)⋊ ⟨α̃0 | α̃2
0⟩ ∼= Z4 ⋊ Z2,

Out(AΓ) ∼= (⟨α̃1⟩ × ⟨α̃2⟩ × ⟨α̃3⟩ × ⟨α̃4⟩)⋊
(
⟨α̃0 | α̃2

0⟩ × ⟨ι | ι2⟩
) ∼= Z4 ⋊ Z2

2.

Here ι acts on α̃0 trivially and on α̃i for 1 ≤ i ≤ 4 as

ια̃iι = α̃−1
i .

Finally, the group presentation for Aut(AΓ) is given as

Aut(AΓ) ∼=
〈
V, α̃0, . . . , α̃4, ε

2
1, . . . , ε

2
4, ι

∣∣ R0, R1, R2, R3, R4

〉
∼= AΓ ⋊

(
Z4 ⋊ Z2

2

)
,

where

R0 = {(s, t;m(e)) = (t, s;m(e)) | e = {s, t} ∈ E}
∪{α̃iv = (α̃i)#(v)α̃i | 0 ≤ i ≤ 4, v ∈ V }
∪{ε2i v = (εi)

2
#(v)ε

2
i | 1 ≤ i ≤ 4, v ∈ V }

∪{ιv = v−1ι | v ∈ V }.

Remark 4.14. The above presentation can be reduced further but we omit the
detail.
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