• Title/Summary/Keyword: trenches

Search Result 110, Processing Time 0.028 seconds

Fabrication and Characteristics of a Piezoelectric Valve for MEMS using a Multilayer Ceramic Actuator (적층형 세라믹 엑추에이터를 이용한 MEMS용 압전밸브의 제작 및 특성)

  • 정귀상;김재민;윤석진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.515-520
    • /
    • 2004
  • We report on the development of a Piezoelectric valvc that is designed to have a high reliability for fluid control systems, such as mass flow control, transportation and chemical analysis. The valve was fabricated using a MCA(multilayer ceramic actuator), which has a low consumption power, high resolution and accurate control. The fabricated valve is composed of MCA, a valve actuator die and an seat die. The design of the actuator dic was done by FEM(finite element method) modeling, respectively. And, the valve seat die with 6 trenches was made. and the actuator die, which possible to optimize control to MCA, was fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the scat/actuator die structure. PDMS(poly dimethylsiloxane) sealing pad was fabricated to minimize a leak-rate. It was also bonded to scat die and stainless steel package. The flow rate was 9.13 sccm at a supplied voltage of 100 V with a 50 % duty ratio and non-linearity was 2.24 % FS. From these results, the fabricated MCA valve is suitable for a variety of flow control equipments, a medical bio-system, semiconductor fabrication process, automobile and air transportation industry with low cost, batch recess and mass production.

A Basic Study on Speciality and Standardization of Marine Geographical Names in Korea (해양 지명의 전문성과 표준화에 관한 기초연구)

  • Choi, Yun-Soo;Han, Kil-Soo;Lim, Young-Tae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.3 s.26
    • /
    • pp.41-46
    • /
    • 2003
  • Marine geographical names refer to the names for the geographical forms in nature such as oceans, straits, bays, inlets, and channels as well as the various undersea form including reefs and trenches. Marine geographical forms, lying under the sea, are different from those in land and are related directly and indirectly to the safe navigation of ships, that is, property and life of human beings. Marine geographical names have not been correctly named and used so far as in the case of using the name 'Sea of Japan' instead of 'East Sea' Marine geographical names have been created arbitrarily from various sources including researchers, institutes, and academic societies, which leads to confusion and makes it difficult for those to be acknowledged internationally. This paper examines the uniqueness and technicality of marine geographical names and analyzes the efforts and status for the standardization processes in Korea.

  • PDF

Physical Properties of TiN films grown by ALD (ALD법으로 증착한 TiN막의 특성)

  • 김재범;홍현석;오기영;이종무
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.3
    • /
    • pp.159-165
    • /
    • 2002
  • The physical properties of the TiN films deposited by ALD using $TiCl_4$and $NH_3$have been investigated. The TiN deposition rate is ~0.6 $\AA$ under an optimum deposition condition and the resistivity of the TiN films is 200~350 $\mu\Omega$cm . According to the XRD analysis results TiN films are crystallized in the ALD process window. AES analysis results show that the Cl impurity concentration in the TiN films is lower than 1 at% and that the atomic ratio of the TiN films is 1:1. Also it is found by SEM observation that the step coverage of the TiN films on which TiN films with trenches the aspect ratio of which is 10:1 is excellent.

Frequency effect of TEOS oxide layer in dual-frequency capacitively coupled CH2F2/C4F8/O2/Ar plasma

  • Lee, J.H.;Kwon, B.S.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.284-284
    • /
    • 2011
  • Recently, the increasing degree of device integration in the fabrication of Si semiconductor devices, etching processes of nano-scale materials and high aspect-ratio (HAR) structures become more important. Due to this reason, etch selectivity control during etching of HAR contact holes and trenches is very important. In this study, The etch selectivity and etch rate of TEOS oxide layer using ACL (amorphous carbon layer) mask are investigated various process parameters in CH2F2/C4F8/O2/Ar plasma during etching TEOS oxide layer using ArF/BARC/SiOx/ACL multilevel resist (MLR) structures. The deformation and etch characteristics of TEOS oxide layer using ACL hard mask was investigated in a dual-frequency superimposed capacitively coupled plasma (DFS-CCP) etcher by different fHF/ fLF combinations by varying the CH2F2/ C4F8 gas flow ratio plasmas. The etch characteristics were measured by on scanning electron microscopy (SEM) And X-ray photoelectron spectroscopy (XPS) analyses and Fourier transform infrared spectroscopy (FT-IR). A process window for very high selective etching of TEOS oxide using ACL mask could be determined by controlling the process parameters and in turn degree of polymerization. Mechanisms for high etch selectivity will discussed in detail.

  • PDF

Filling of Cu-Al Alloy Into Nanoscale Trench with High Aspect Ratio by Cyclic Metal Organic Chemical Vapor Deposition

  • Moon, H.K.;Lee, S.J.;Lee, J.H.;Yoon, J.;Kim, H.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.370-370
    • /
    • 2012
  • Feature size of Cu interconnects keep shrinking into several tens of nanometer level. For this reason, the Cu interconnects face challenging issues such as increase of electro-migration, line-width dependent electrical resistivity increase, and gap-filling difficulty in high aspect ratio structures. As the thickness of the Cu film decreases below 30 nm, the electrical resistivity is not any more constant, but rather exponential. Research on alloying with other elements have been started to inhibit such escalation in the electrical resistivity. A faint trace of Al added in Cu film by sputtering was reported to contribute to suppression of the increase of the electrical resistivity. From an industrial point of view, we introduced cyclic metal organic chemical vapor deposition (MOCVD) in order to control Al concentration in the Cu film more easily by controlling the delivery time ratio of Cu and Al precursors. The amount of alloying element could be lowered at level of below 1 at%. Process of the alloy formation was applied into gap-filling to evaluate the performance of the gap-filling. Voidless gap-filling even into high aspect ratio trenches was achieved. In-depth analysis will be discussed in detail.

  • PDF

Design, Fabrication and Characteristics of a MCA Valve (적층형 압전밸브의 설계, 제작 및 특성)

  • Chung, Gwiy-Sang;Kim, Jae-Min;Yoon, Suk-Jin;Jeong, Soon-Jong;Song, Jae-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.230-235
    • /
    • 2004
  • This paper describes the design, fabrication and characteristics of a piezoelectric valve using MCA(Multilayer ceramic actuator). The MCA valve, which has the buckling effect, consists of three separate structures; MCA, a valve actuator die and an a seat die. The design of the actuator die was done by FEM modeling and displacement measurement, respectively. The valve seat die with 6 trenches was made, and the actuator die, which is driven to MCA under optimized conditions, was also fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the seat/actuator die structure. PDMS sealing pad was fabricated to minimize a leak-rate. It was also bonded to seat die and SUS package. The MCA valve shows a flow rate of 9.13 seem at a supplied voltage of 100 V with a 50% duty cycle, maximum non-linearity was 2.24% FS and leak rate was $3.03{\times}10^{-8}pa{\codt}m^{3}/cm^{2}$. Therefore, the fabricated MCA valve is suitable for a variety of flow control equipment, a medical bio-system, automobile and air transportation industry.

Application of Ground Penetrating Radar for Archaeological Monuments (지하레이다를 이용한 고고학 탐사)

  • Shon, Howoong
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.745-752
    • /
    • 1996
  • A ground penetrating radar survey with a 500 MHz radar antenna was applied to make archaeological investigation in Nakajima of Ishikawa Prefecture, Japan. The ability of the radar system to aid in the archaeological preservation of burial ground was the primary concern of the experiments. The average variance of the radar wave returned from progressively deeper reflectors in a tomb were contoured at 2.4 nanoseconds intervals. The results of analysis indicates the location of trenches and the coffin area at the tomb site. The orientation of the coffin is dearly defined on contour maps made below 9.6 nanoseconds horizon. The general features detected by the GPR were also reconfirmed by electric resistivity survey made at the site. The radar was accurate in ascertaining the location, orientation, and the general construction style of the coffin.

  • PDF

Fabrication of a high performance microvalve using a multilayer piezoelectric actuator and its characteristics (적층형 압전 엑츄에이터를 이용한 고성능 마이크로 밸브의 제작과 그 특성)

  • Seo, Jung-Ho;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.390-391
    • /
    • 2006
  • This paper describes the design, fabrication and characteristics of a micromachined piezoelectric valve utilizing a multilayer ceramic actuator (MCA). The micromachined MCA valve, which uses a buckling effect, consists of three separate structures: the MCA, the valve actuator die and the seat die. The valve seat die with 6 trenches was made, and the actuator die, which is driven by the MCA under optimized conditions, was also fabricated. After Si wafer direct bonding between the seat die and the actuator die, the MCA was also anodically bonded to the seat/actuator die structure. A polydimethylsiloxane (PDMS) sealing pad was fabricated to minimize the leak rate. Finally, the PDMS sealing pad was also bonded to the seat die and the stainless steel package. The MCA valve shows a flow rate of 9.13 sccm at an applied DC voltage of 100 V with a 50% duty cycle and a maximum non-linearity of 2.24% FS. Therefore, the fabricated MCA valve is suitable for a variety of flow control equipment, as a medical bio-system and in the automobile industry.

  • PDF

A Study on 0.13μm Cu/Low-k Process Setup and Yield Improvement (0.13μm Cu/Low-k 공정 Setup과 수율 향상에 관한 연구)

  • Lee, Hyun-Ki;Chang, Eui-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.325-331
    • /
    • 2007
  • In this study, the inter-metal dielectric material of FSG was changed by low-k material in $0.13{\mu}m$ foundry-compatible technology (FCT) device process based on fluorinated silicate glass (FSG). Black diamond (BD) was used as a low-k material with a dielectric constant of 2.95 for optimization and yield-improvement of the low-k based device process. For yield-improvement in low-k based device process, some problems such as photoresist (PR) poisoning, damage of low-k in etch/ash/cleaning process, and chemical mechanical planarization (CMP) delamination must be solved. The PR poisoning was not observed in BD based device. The pressure in CMP process decreased to 2.8 psi to remove the CMP delamination for Cu-CMP and USG-CMP. $H_2O$ ashing process was selected instead of $O_2$ ashing process due to the lowest condition of low-k damage. NE14 cleaning after ashing process lot the removal of organic residues in vias and trenches was employed for wet process instead of dilute HF (DHF) process. The similar-state of SRAM yield was obtained in Cu/low-k process compared with the conventional $0.13{\mu}m$ FCT device by the optimization of these process conditions.

Silicon trench etching using inductively coupled Cl2/O2 and Cl2/N2 plasmas

  • Kim, Hyeon-Soo;Lee, Young-Jun;Young, Yeom-Geun
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.2
    • /
    • pp.122-132
    • /
    • 1998
  • Characteristics of inductively coupled Cl2/O2 and Cl2/N2 plasmas and their effects on the formation of submicron deep trench etching of single crystal silicon have been investigated using Langmuir probe, quadrupole mass spectrometer (QMS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), Also, when silicon is etched with oxygen added chlorine plasmas, etch products recombined with oxygen such as SiClxOy emerged and Si-O bondings were found on the etched silicon surface. However, when nitrogen is added to chlorine, no etch products recombined with nitrogen nor Si-N bondings were found on the etched silicon surface. When deep silicon trenches were teached, the characteristics of Cl2/O2 and Cl2/N2 plasmas changed the thickness of the sidewall residue (passivation layer) and the etch profile. Vertical deep submicron trench profiles having the aspect ratio higher than 5 could be obtained by controlling the thickness of the residue formed on the trench sidewall using Cl2(O2/N2) plasmas.

  • PDF