• Title/Summary/Keyword: trench width

Search Result 67, Processing Time 0.032 seconds

Effect of pattern spacing and slurry types on the surface characteristics in 571-CMP process (STI-CMP공정에서 표면특성에 미치는 패턴구조 및 슬러리 종류의 효과)

  • Lee, Hoon;Lim, Dae-Soon;Lee, Sang-Ick
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.272-278
    • /
    • 2002
  • Recently, STI(Shallow Trench Isolation) process has attracted attention for high density of semiconductor device as a essential isolation technology. In this paper, the effect of pattern density, trench width and selectivity of slurry on dishing in STI CMP process was investigated by using specially designed isolation pattern. As trench width increased, the dishing tends to increase. At $20{\mu}m$ pattern size, the dishing was decreased with increasing pattern density Low selectivity slurry shows less dishing at over $160{\mu}m$ trench width, whereas high selectivity slurry shows less dishing at below $160{\mu}m$ trench width.

  • PDF

A Small Scaling Lateral Trench IGBT with Improved Electrical Characteristics for Smart Power IC (스마트 파워 IC를 위한 향상된 전기특성의 소규모 횡형 트랜치 IGBT)

  • 문승현;강이구;성만영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.267-270
    • /
    • 2001
  • A new small scaling Lateral Trench Insulated Gate Bipolar Transistor (SSLTIGBT) was proposed to improve the characteristics of the device. The entire electrode of the LTIGBT was replaced with a trench-type electrode. The LTIGBT was designed so that the width of device was no more than 10$\mu\textrm{m}$. The latch-up current densities were improved by 4.5 and 7.6 times, respectively, compared to those of the same sifted conventional LTIGBT and the conventional LTIGBT which has the width of 17$\mu\textrm{m}$. The enhanced latch-up capability of the SSLTIGBT was obtained due to the fact that the hole current in the device reaches the cathode via the p+ cathode layer underneath the n+ cathode layer, directly. The forward blocking voltage of the SSLTIGBT was 125 V. At the same size, those of the conventional LTIGBT and the conventional LTIGBT with the width of 17$\mu\textrm{m}$ were 65 V and 105 V, respectively. Because the proposed device was constructed of trench-type electrodes, the electric field in the device were crowded to trench oxide. Thus, the punch through breakdown of LTEIGBT occurred late.

  • PDF

A Study on Switching Characteristics of 1,200V Trench Gate Field stop IGBT Process Variables (1,200V 급 Trench Gate Field stop IGBT 공정변수에 따른 스위칭 특성 연구)

  • Jo, Chang Hyeon;Kim, Dea Hee;Ahn, Byoung Sup;Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.350-355
    • /
    • 2021
  • IGBT is a power semiconductor device that contains both MOSFET and BJT structures, and it has fast switching speed of MOSFET, high breakdown voltage and high current of BJT characteristics. IGBT is a device that targets the requirements of an ideal power semiconductor device with high breakdown voltage, low VCE-SAT, fast switching speed and high reliability. In this paper, we analyzed Gate oxide thickness, Trench Gate Width, and P+Emitter width, which are the top process parameters of 1,200V Trench Gate Field Stop IGBT, and suggested the optimized top process parameters. Using the Synopsys T-CAD Simulator, we designed IGBT devices with electrical characteristics that has breakdown voltage of 1,470 V, VCE-SAT 2.17 V, Eon 0.361 mJ and Eoff 1.152 mJ.

A Study of SiC Trench Schottky Diode with Tilt-Implantation for Edge Termination (Edge Termination을 위해 Tilt-Implantation을 이용한 SiC Trench Schottky Diode에 대한 연구)

  • Song, Gil-Yong;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.214-219
    • /
    • 2014
  • In this paper, the usage of tilt-implanted trench Schottky diode(TITSD) based on silicon carbide is proposed. A tilt-implanted trench termination technique modified for SiC is proposed as a method to keep all the potentials confined in the trench insulator when reverse blocking mode is operated. With the side wall doping concentration of $1{\times}10^{19}cm^{-3}$ nitrogen, the termination area of the TITSD is reduced without any sacrifice in breakdown voltage while potential is confined within insulator. When the trench depth is set to 11um and the width is optimized, a breakdown voltage of 2750V is obtained and termination area is 38.7% smaller than that of other devices which use guard rings for the same breakdown voltage. A Sentaurus device simulator is used to analyze the characteristics of the TITSD. The performance of the TITSD is compared to the conventional trench Schottky diode.

A Small Scaling Lateral Trench IGBT with Improved Electrical Characteristics for Smart Power IC

  • Moon, Seung Hyun;Kang, Ey Goo;Sung, Man Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.4
    • /
    • pp.15-18
    • /
    • 2001
  • A new small scaling Lateral Trench Insulated Gate Bipolar Transistor (SSLTIGBT) was proposed to improve the characteristics of the device. The entire electrode of the LTIGBT was replaced with a trench-type electrode. The LTIGBT was designed so that the width of device was no more than 10 ${\mu}{\textrm}{m}$. The latch-up current densities were improved by 4.5 and 7.6 times, respectively, compared to those of the same sized conventional LTIGBT arid the conventional LTIGBT which has the width of 17 ${\mu}{\textrm}{m}$. The enhanced latch-up capability of the SSLTIGBT was obtained due to the fact that the hole current in the device reaches the cathode via the p+ cathode layer underneath the n+ cathode layer, directly. The forward blocking voltage of the SSLTIGBT was 125 V. At the same size, those of the conventional LTIGBT and the conventional LTIGBT with the width of 17 ${\mu}{\textrm}{m}$ were 65 V and 105 V, respectively. Because the proposed device was constructed of trench-type electrodes, the electric field In the device were crowded to trench oxide. Thus, the punch through breakdown of LTEIGBT occurred late.

  • PDF

A Trench Structure for Low Bending Loss of Bent Optical Waveguides (원형으로 굽은 광도파로의 low bending loss를 위한 trench 구조설계: 원통좌표계 FD-BPM)

  • 한영진;김창민
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.373-378
    • /
    • 1995
  • Bending losses of bent optical waveguides are calculated by virtue of the finite difference-beam p propagation method in the cylindrical coordinate system. In order to minimize the radiating losses of bent optical waveguides, we apply the trench structure to the bent waveguides and perform the a analysis to keep track of: 1) the influence of curvature radius on the bending loss without the trench, 2) the influence of curvature radius and refractive index difference on the bending loss with the trench, 3) the influence of the trench width on the bending loss.

  • PDF

Characteristics of Transistors and Isolation as Trench Depth (트렌치 깊이에 따른 트랜지스터와 소자분리 특성)

  • 박상원;김선순;최준기;이상희;김용해;장성근;한대희;김형덕
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.911-913
    • /
    • 1999
  • Shallow Trench Isolation (STI) has become the most promising isolation scheme for ULSI applications. The stress of STI structure is one of several factors to degrade characteristics of a device. The stress contours or STI structure vary with the trench depth. Isolation characteristics of STI was analyzed as the depth of trench varied. And transistor characteristics was compared. Isolation punch-through voltage for n$^{+}$ to pwell and p$^{+}$ to nwell increased as trench depth increased. n$^{+}$ to pwell leakage current had nothing to do with trench depth but n$^{+}$ to pwell leakage current decreased as trench depth increased. In the case of transistor characteristics, short channel effect was independent on trench depth and inverse narrow width effect was greater for deeper trenches. Therefore in order to achieve stable device, it is important to minimize stress by optimizing trench depth.

  • PDF

The Characteristics of a Dual gate Trench Emitter IGBT (이중 Gate를 갖는 Trench Emitter IGBT의 특성)

  • Gang, Yeong-Su;Jeong, Sang-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.523-526
    • /
    • 2000
  • A dual gate trench emitter IGBT structure is proposed and studied numerically using the device simulator MEDICI. The on-state forward voltage drop latch-up current density turn-off time and breakdown voltage of the proposed structure are compared with those of the conventional DMOS-IGBT and trench gate IGBT structures. The proposed structure forms an additional channel and increases collector current level resulting in reduction of on -state forward voltage drop. In addition the trench emitter increases latch-up current density by 148% in comparison with that for the conventional DMOS-IGBT and by 83% compared with that for the trench gate IGBT without degradation in breakdown voltage when the half trench gate width(Tgw) and trench emitter depth(Ted) are fixed at $1.5\mum\; and\; 2\mum$, respectively

  • PDF

A Study on Electrical Characteristics of Trench Field Ring for Breakdown Characteristics (내압특성개선을 위한 트렌치 필드링 설계 및 전기적특성에 관한 연구)

  • Kang, Ey-Goo;Kim, Beum-Jun;Lee, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • In this paper, we proposed trench field ring for breakdown voltage of power devices. The proposed trench field ring was improved 10% efficiency comparing with conventional field ring. we analyzed five parameters of trench field ring for design of trench field ring and carried out 2-D devices simulation and process simulations. That is, we analyzed number of field ring, juction depth, distance of field rings, trench width, doping profield. The proposed trench field ring was better to more 1000 V.

Optimal Design of Field Ring for Power Devices (고 내압 전력 소자 설계를 위한 필드 링 최적화에 관한 연구)

  • Kang, Ey-Goo
    • Journal of IKEEE
    • /
    • v.14 no.3
    • /
    • pp.199-204
    • /
    • 2010
  • In this paper, we proposed trench field ring for breakdown voltage of power devices. The proposed trench field ring was improved 10% efficiency comparing with conventional field ring. we analyzed five parameters of trench field ring for design of trench field ring and carried out 2-D devices simulation and process simulations. That is, we analyzed number of field ring, juction depth, distance of field rings, trench width, doping profield. The proposed trench field ring was better to more 1000V.