• 제목/요약/키워드: treatment systems

검색결과 2,979건 처리시간 0.039초

Root Barrier and Fertilizer Effects on Soil CO2 Efflux and Cotton Yield in a Pecan-Cotton Alley Cropping System in the Southern United States

  • Lee, Kye-Han;An, Kiwan
    • 한국산림과학회지
    • /
    • 제95권2호
    • /
    • pp.177-182
    • /
    • 2006
  • Little information is available on soil $CO_2$ efflux and crop yield under agroforestry systems. Soil $CO_2$ efflux, microbial biomass C, live fine root biomass, and cotton yield were measured under a pecan (Carya illinoinensis K. Koch)-cotton (Gossypium hirsutum L.) alley cropping system in southern USA. A belowground polyethylene root barrier was used to isolate tree roots from cotton which is to provide barrier and non-barrier treatments. The barrier and non-barrier treatment was randomly divided into three plots for conventional inorganic fertilizer application and the other three plots for organic poultry litter application. The rate of soil $CO_2$ efflux and the soil microbial biomass C were affected significantly (P < 0.05) by the fertilizer treatment while no significant effect of the barrier treatment was occurred. Cotton lint yield was significantly (P < 0.0 I) affected by the root barrier treatment while no effect was occurred by the fertilizer treatment with the yields being greatest ($521.2kg\;ha^{-1}$) in the root barrier ${\times}$ inorganic fertilizer treatment and lowest ($159.8kg\;ha^{-1}$) in the non-barrier ${\times}$ inorganic fertilizer treatment. The results suggest that the separation of tree-crop root systems with the application of inorganic fertilizer influence the soil moisture and soil N availability, which in tum will affect the magnitude of crop yield.

내구수명 증진을 위한 콘크리트 구조물용 표면처리공법 개발 (Development of Surface Treatment Systems for Concrete Structures to Extend Service Life)

  • 이창수;윤인석;이규동;박종혁
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.255-261
    • /
    • 2002
  • Concrete structures stand in poor surrounding than it has ever been met before, because they are installed in severe conditions such as chloride penetration. $CO_2$ gas, water and so on. Therefore, the countermeasure to efficiently protect from the deterioration of concrete structures should be urgently considered. From this point of view, this study was aimed to develop surface treatment systems for concrete structures, which cover physical properties, long term durability and economic consideration. Developing the optimal surface treatment materials, powder type polymer or liquid type polymer was added to inorganic base materials. Three surface treatment materials which had shown best results in primary tests were selected and durability tests were fulfilled. Consequently optimum surface treatment material was developed. The surface treatment materials, which were developed through this study, can efficiently extend the service life of concrete structures. As a result, the life cycle cost should be reduced and the waste of material resources would be cut down.

Good modeling practice of water treatment processes

  • Suvalija, Suvada;Milisic, Hata;Hadzic, Emina
    • Coupled systems mechanics
    • /
    • 제11권1호
    • /
    • pp.79-91
    • /
    • 2022
  • Models for water treatment processes include simulation, i.e., modelling of water quality, flow hydraulics, process controls and design. Water treatment processes are inherently dynamic because of the large variations in the influent water flow rate, concentration and composition. Moreover, these variations are to a large extent not possible to control. Mathematical models and computer simulations are essential to describe, predict and control the complicated interactions of the water treatment processes. An accurate description of such systems can therefore result in highly complex models, which may not be very useful from a practical, operational point of view. The main objective is to combine knowledge of the process dynamics with mathematical methods for processes estimation and identification. Good modelling practice is way to obtain this objective and to improve water treatment processes(its understanding, design, control and performance- efficiency). By synthesize of existing knowledge and experience on good modelling practices and principles the aim is to help address the critical strategic gaps and weaknessesin water treatment models application.

화병환자의 불면증 침치료가 인체의 자율신경계에 미치는 영향 (The Effects of Acupuncture Treatment on the Autonomic Nervous Systems of Hwa-byung Patients' Insomnia)

  • 배달빛;유소정;이고은;이승재;강형원;유영수
    • 동의신경정신과학회지
    • /
    • 제25권3호
    • /
    • pp.235-242
    • /
    • 2014
  • Objectives: The purpose of this research is to examine effects of acupuncture treatment on the autonomic nervous systems of Hwa-byung patients with insomnia. Methods: The study was performed through a patient-assessor blind, randomized, placebo-controlled trial in which the volunteers, data collectors, and analysts were unaware of which individuals were receiving the treatment. A total of thirty-seven volunteers were divided into 2 groups. Eighteen subjects were placed into a trial group and 19 subjects into a control group using a randomization table. The trial group was treated with bilateral Shigu, Ahnmyun, B62 (Shinmaek), and K6 (Chohae), while the control group was not given any other treatment. The ISI (Insomnia Severity Scale) was measured as the first evaluative instrument, and then a comparative analysis was conducted by comparing the results with those measured by ANS (BVP/HR, respiration rate, peripheral temperature, skin conductance, EMG). Results: In the BVP/HR, statistically significant decreases were found in those from the trial group compared to those of the control group. Skin conductance was found to be significantly increased in the trial group, as compared to the control group. However, there were no significant differences between the groups with respect to peripheral temperature, respiration rate, and EMG. Conclusions: The results suggest that acupuncture treatment is effective in the treatment of hwa-byung patients who suffer from insomnia due to their autonomic nervous systems.

미세조류를 이용한 질소제거 장치의 크기 (Size Estimation of Microalgal System for Nitrogen Removal)

  • 김한욱;이우성;이철균
    • KSBB Journal
    • /
    • 제19권3호
    • /
    • pp.236-240
    • /
    • 2004
  • Batch experiment에서 다양한 질소 농도에서 구해진 질소제거 속도와 비 생장속도 등의 데이터를 토대로 4.6일의 체류시간을 갖는 2단 처리 장치를 설계하였다. 그리고 continuous experiments에서는 3.5일의 체류시간을 갖는 2단의 처리 장치를 설계하였다. 두 가지 값에 차이는 있지만 실제 현장에서 폐수 처리 장치를 설계할 때 충분한 자료가 되리라고 판단한다. 따라서 위의 결과를 토대로 기존 시스템에 미세조류 시스템을 부가한다면 기존공정의 단점인 잉여질소 제거 장치로서 충분히 역할을 수행해 배출 기준치를 만족시키는 안전한 폐수처리장치가 되리라고 판단한다.

나노입자의 현황조사 및 처리방안 마련을 위한 문헌연구 (Review of Nanoparticles in Drinking Water: Risk Assessment and Treatment)

  • 김승현;홍승관;윤제용;김두일;이상호;권지향;김형수;독고석;국지훈
    • 상하수도학회지
    • /
    • 제25권2호
    • /
    • pp.201-212
    • /
    • 2011
  • Nanotechnology is the applied science which develops new materials and systems sized within 1 to 100 nanometer, and improves their physical, chemical, and biological characteristics by manipulating on an atomic and molecular scale. This nanotechnology has been applied to wide spectrum of industries resulting in production of various nanoparticles. It is expected that more nanoparticles will be generated and enter to natural water bodies, imposing great threat to potable water resources. However their toxicity and treatment options have not been throughly investigated, despite the significant growth of nanotechnology-based industries. The objective of this study is to provide fundamental information for the management of nanoparticles in water supply systems through extensive literature survey. More specifically, two types of nanoparticles are selected to be a potential problem for drinking water treatment. They are carbon nanoparticles such as carbon nanotube and fullerene, and metal nanoparticles including silver, gold, silica and titanium oxide. In this study, basic characteristics and toxicity of these nanoparticles were first investigated systematically. Their monitoring techniques and treatment efficiencies in conventional water treatment plants were also studied to examine our capability to mitigate the risk associated with nanoparticles. This study suggests that the technologies monitoring nanopartilces need to be greatly improved in water supply systems, and more advanced water treatment processes should be adopted for better control of these nanoparticles.

활성물질을 사용하는 선박평형수 처리장치의 IMO 승인 절차 고찰 (Consideration of the Procedure for IMO Approval of Ballast Water Treatment System that Make Use of Active Substances)

  • 김은찬
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제11권4호
    • /
    • pp.214-220
    • /
    • 2008
  • 선박평형수 관리 협약에서 활성물질을 사용하는 선박평형수 처리장치는 IMO가 제정한 절차에 따라 IMO로부터 승인을 받아야하는 것으로 되어 있다. 협약에서 활성물질이란 유해 수중 생물과 병원균에 대하여 바이러스나 균류를 포함한 일반적인 또는 특정한 작용을 하는 물질 또는 생물을 말한다고 되어 있다. IMO 해양환경 보호위원회에서는 2008년 10월까지 13개의 선박평형수 처리장치에 기본승인을 부여하였고 4개의 처리장치에 최종승인을 부여하였다. 본 논문에서는 "활성물질을 사용하는 선박평형수 관리시스템의 승인을 위한 절차서(G9)"와 "GESAMP-BWWG의 정보 수집과 업무 수행을 위한 방법"에 근거하여 기본승인과 최종승인의 절차와 문서의 요소를 고찰하였고, IMO로부터 기본승인 또는 최종승인을 받은 처리장치의 승인 내용을 요약하였으며, 이로부터 몇 가지 문제점을 제기하였다.

  • PDF

Combined Treatment of Herbal Mixture Extract H9 with Trastuzumab Enhances Anti-tumor Growth Effect

  • Lee, Sunyi;Han, Sora;Jeong, Ae Lee;Park, Jeong Su;Jung, Seung Hyun;Choi, Kang-Duk;Yang, Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1036-1046
    • /
    • 2015
  • Extracts from Asian medicinal herbs are known to be successful therapeutic agents against cancer. In this study, the effects of three types of herbal extracts on anti-tumor growth were examined. Among the three types of herbal extracts, H9 showed stronger anti-tumor growth effects than H5 and H11 in vivo. To find the molecular mechanism by which H9 inhibited the proliferation of breast cancer cell lines, the levels of apoptotic markers were examined. Proapoptotic markers, including cleaved PARP and cleaved caspases 3 and 9, were increased, whereas the anti-apoptotic marker Bcl-2 was decreased by H9 treatment. Next, the combined effect of H9 with the chemotherapeutic drugs doxorubicin/cyclophosphamide (AC) on tumor growth was examined using 4T1-tumor-bearing mice. The combined treatment of H9 with AC did not show additive or synergetic anti-tumor growth effects. However, when tumor-bearing mice were co-treated with H9 and the targeted anti-tumor drug trastuzumab, a delay in tumor growth was observed. The combined treatment of H9 and trastuzumab caused an increase of natural killer (NK) cells and a decrease of myeloid-derived suppressor cells (MDSC). Taken together, H9 induces the apoptotic death of tumor cells while increasing anti-tumor immune activity through the enhancement of NK activity and diminishment of MDSC.

Hydraulic Evaluation and Performance of On-Site Sanitation Systems in Central Thailand

  • Koottatep, Thammarat;Eamrat, Rawintra;Pussayanavin, Tatchai;Polprasert, Chongrak
    • Environmental Engineering Research
    • /
    • 제19권3호
    • /
    • pp.269-274
    • /
    • 2014
  • On-site sanitation systems are typically installed to treat grey and toilet wastewaters in areas without sewer and centralized treatment systems. It is well known that, due to inappropriate design and operation, treatment performance of these systems in developing countries is not satisfactory in the removal of pathogens and organic matters. This research aimed to investigate the hydraulic conditions occurring in some on-site sanitation systems and the effects of hydraulic retention times (HRTs) on the system performance. The experiments were conducted with a laboratory-scale septic tank (40L in size) and an actual septic tank (600L in size), to test the hydraulic conditions by using tracer study with HRTs varying at 12, 24 and 48 hr. The experimental results showed the dispersion numbers to be in the range of 0.017-0.320 and the short-circuit ratios in the range of 0.014-0.031, indicating the reactors having a high level of sort-circuiting and approaching complete-mix conditions. The removal efficiency of $BOD_5$ was found to be 67% and the $k_{30}$ values for $BOD_5$ was $2.04day^{-1}$. A modified complete-mix model based on the relationship between $BOD_5$ removal efficiencies and HRTs was developed and validated with actual-scale septic tank data having a correlation coefficient ($R^2$) of 0.90. Therefore, to better protect our environment and minimizing health risks, new generation toilets should be developed that could minimize short-circuiting and improving treatment performance.

Electrooxidation of tannery wastewater with continuous flow system: Role of electrode materials

  • Tien, Tran Tan;Luu, Tran Le
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.324-334
    • /
    • 2020
  • Tannery wastewater is known to contain high concentrations of organic compounds, pathogens, and other toxic inorganic elements such as heavy metals, nitrogen, sulfur, etc. Biological methods such as aerobic and anaerobic processes are unsuitable for tannery wastewater treatment due to its high salinity, and electrochemical oxidation offers a promising method to solve this problem. In this study, raw tannery wastewater treatment using DSA® Ti/RuO2, Ti/IrO2 and Ti/BDD electrodes with continuous flow systems was examined. Effects of current densities and electrolysis times were investigated, to evaluate the process performance and energy consumption. The results showed that a Ti/BDD electrode is able to reach higher treatment efficiency than Ti/IrO2, and Ti/RuO2 electrodes across all parameters, excluding Total Nitrogen. The main mechanism of tannery wastewater oxidation at a Ti/BDD electrode is based on direct oxidation on the electrode surface combined with the generation of oxidants such as °OH and Cl2, while at DSA® Ti/RuO2 and Ti/IrO2 electrodes, the oxidation mechanisms are based on the generation of chlorine. After treatment, the effluents can be discharged to the environment after 6-12 h of electrolysis. Electrooxidation thus offers a promising method for removing the nutrients and non-biodegradable organic compounds in tannery wastewater.