• Title/Summary/Keyword: treated sewage

Search Result 244, Processing Time 0.04 seconds

Comparison of Biological Characteristics on the Organic Waste-treated Lysimeter Soil by RFLP, PLFA, and CLSU (RFLP, PLFA, CLSU를 이용한 폐기물연용토양의 토양미생물 특성 평가 비교)

  • Jang, Kab-Yeul;Weon, Hang-Yeon;Lee, Kang-Hyo;Kwon, Sun-Ik;Kong, Won-sik;Suh, Jang-sun;Sung, Jae-Mo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.415-418
    • /
    • 2008
  • The application of sludge wastes into agricultural fields has been increasing annually in Korea. In particular, sewage sludge application has been widely accepted in decades. Sewage sludge application aid in the recycling of essential nutrients and act as a source of organic matter improving the structure and water-holding properties of the soil. The efficient use of sludge wastes, however, requires an individual assessment of waste products. This study assessed the biological characteristics of organic waste-treated lysimeter soils and develop its indicator to assess the soil health of organic waste-treated lysimeter soils. Several analytical techniques more recently developed such as restriction fragment length polymorphism (RFLP), phospholipid fatty acid (PLFA), and community level substrate utilization (CLSU) fingerprints allow for detailed analyses of soil microbial communities. PLFA and RFLP was, therefore, used in the study to characterize the microbial communities in soil without the need to isolate individual fungi and bacteria. PLFA, RFLP and CLSU have been utilized to assess microbial characteristics of the lysimeter soils with four different sludge wastes for eight consecutive years. Each of these methods was analyzed for a different aspect of soil microbial characteristics. The study would disclose those methods yielded highly reproductive results for each soil and allow distinguishing the soils based on the structures of specific geneand PLFA-pools more than CLSU fingerprints. PLFA methods, especially, revealed the same relative similarities of the treated soils based on cluster analysis of the biological characteristics. Pig manure compost-treated soil, however, was only the same relative resemblance among the three methods. These results indicated that PLFA easily assessed the biological soil characterization.

Copper(II) Binding Mechanisms with Water Soluble Organic Fractions Extracted from Sewage Sludge Amended Soils (구리(II) 이온과 Sewage Sludge를 시용(施用)한 토양(土壤)에서 추출(抽出)한 수용성유기물(水溶性有機物)과의 착화합물(錯化合物) 형성방법(形成方法))

  • Lim, Hyung-Sik;Volk, V.V.;Baham, John
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.4
    • /
    • pp.307-314
    • /
    • 1986
  • Cu(II) binding mechanisms with water soluble organic fractions (WSOF) extracted from an agricultural soil (W), a soil treated with sludge for 6 years ($WS_6$), a sludge-soil mixture incubated for one week ($WS_1$), and sewage sludge (SS) were studied by electron spin resonance (ESR) spectroscopy and potentiometric titrations. Cu(II)-WSOF complexes produced $g_{11}$ values which were larger than $g_{\perp}$ values, indicating that the coordination of Cu(II) complex was an elongated octahedron. At liquid $N_2$ temperature (77K), the Cu(II)-W complex showed an anisotropic ESR spectrum while the Cu(II)-SS complex showed an isotropic spectrum. These spectral results suggest that the oxygen donor ligands of W may form relatively strong bonds with $Cu^{2+}$ due to extensive chelation while ligands of SS may form little or no chelate bonds with $Cu^{2+}$. The ESR spectra of Cu(II)-SS complex also suggest that each of four in-plane ligands (e.g., $COO^-$, $H_2O$, $Cl^-$, etc.) may act independently as monodentate ligands. Oxygen donor ligands such as aromatic carboxyl groups were probably the major Cu(II) binding sites in W. Sulfonate, aliphatic carboxyl group, and N-containing ligands were probably the major binding sites in SS at pH 5. The Cu(II) complexation with N-containing groups increased as sludge was added to the soil. Much higher (6x) pyridine concentrations were required to displace W from Cu(II)-W complex as compared to the Cu(II)-SS complex.

  • PDF

Characterization of the Water Soluble Organic Fraction Extracted from a Sewage Sludge Amended Soil (Sewage Sludge를 시용(施用)한 토양(土壤)에서 추출(抽出)한 수용성유기물(水溶性有機物)의 화학구조적(化學構造的) 특성(特性))

  • Lim, Hyungsik;Volk, V.V.;Baham, J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.1
    • /
    • pp.38-49
    • /
    • 1985
  • The water soluble organic fractions (WSOF) from an agricultural soil (W), a soil treated with sludge for 6 years ($WS_6$), a sludge-soil mixture incubated for one week ($WS_1$), and sewage sludge (SS) were extracted, purified, and characterized by elemental analysis, functional group determinations, infrared, UV-visible, and proton nuclear magnetic resonance spectrosocpy. The SS was characterized by higher organic H, N, and P contents, a higher H/C ratio, and a lower C/N ratio than W. Total acidity carboxyl and phenolic hydroxyl group contents were generally highest in SS, intermediate in $WS_6$ and $WS_1$, and lowest in W. Overall aromatic character and aromatic carboxyl group contents were highest in W, and lowest in SS. Aliphatic proton, aliphatic carboxyl, and phenolic hydroxyl group contents were highest in SS, and lowest in W. Protein decomposition products were the pronounced components in SS, and decreased in concentration as the sludge component in the mixtures decreased. The $^1H$-NMR spectra suggested that the SS-protons were bound to a wider range of functional groups than W-protons. Structural complexities around the aromatic protons followed the following order: SS>$WS_1$>$WS_6$>W.

  • PDF

Evaluation of Combined Vertical and Horizontal Flow Sand-Filled Reed Constructed Wetland with Intermittent Feeding for Sewage Treatment (간헐 주입 2단(수직 및 수평 흐름) 모래 갈대 인공습지에 의한 생활하수 처리)

  • Seo, Jeoung-Yoon
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.261-268
    • /
    • 2014
  • A sewage was treated using serially combined vertical(VFCW)and horizontal flow sand-filled reed constructed wetland(HFCW) with intermittent feeding. The sand had 1~3 mm diameter. The sewage entering the sewage treatment plant of Gyeonsang National University was fed into the reed constructed wetland bed for 10 minutes every 6 hours at the hydraulic load of $314L/m^2{\cdot}day$ based on the surface ares of the VFCW. In the VFCW effluent pH values were lower than those of the influent, whereas they were higher than those of the influent in the HFCW. DO values were increased in VFCW, but they were decreased in the HFCW. The OTR was $58.72gO_2/m^2{\cdot}day$ in the VFCW and $7.72gO_2/m^2{\cdot}day$ in the HFCW. Average removal efficiencies were SS 94.80%, BOD 90.77%, $COD_{Cr}$ 85.87%, $COD_{Mn}$ 87.72%, T-N 64.74%, $NH_4{^+}$-N 86.44%, T-P 87.70%. Nearly, half of T-N in the effluent was $NO_3{^-}$-N but the concentration of $NO_2{^-}$-N in the effluent was less than 0.64 mg/L.

Problems of lake water management in Korea (한국의 호수 수질관리의 문제점)

  • 김범철;전만식;김윤희
    • Proceedings of the Korean Society of Environment and Ecology Conference
    • /
    • 2003.10a
    • /
    • pp.105-126
    • /
    • 2003
  • In Korea most of annual rainfall is concentrated in several episodic heavy rains during the season of summer monsoon and typhoon. Because of uneven rainfall distribution many dams have been constructed in order to secure water supply in dry seasons. The Han River system has the most dams among Korean rivers, and the river is a series of dams now. Reservoirs need different strategy of water quality control from river water. Autochthonous organic matter and phosphorus should be the major target to be controlled in lakes. In this Paper some problems are discussed that makes efforts of water quality improvement ineffective in lakes of Korea, even after the substantial investment to wastewater treatment facilities.1) Phosphorus is the key factor controlling eutrophication of lakes and the reduction ofphosphors should be the major target of water treatment. However, water quality management strategy in Korea is still stream-oriented, and focused on BOD removal from sewage. Phosphorus removal efficiency remains as low as 10-30%, because biological treatment is adopted for both secondary treatment and advanced treatment. The standard for TP concentration of the sewage treatment plant effluent is 6 mgP/l in most of regions, and 2 mg/l in enforced region near metropolitan water intake point. TP in the effluents of sewage treatment plants are usually 1-2 mg/1, and most of plants meet the effluent regulation without a further phosphorus removal process. The generous TP standard for effluents discourages further efforts to improve phosphorus removal efficiency of sewage treatment. Considering that TP standard for the effluent is below 0.1 mg/l in some countries, it should be amended to below 0.1 mg/l in Korea, especially in the watershed of large lakes.2) Urban runoff and combined sewer overflow are not treated, even though their total loading into lakes can be comparable to municipal sewage discharges on dry days. Chemical coagulation and rapid settling might be the solution to urban runoff in regard of intermittent operation on only rainy days.3) Aggregated precipitation in Korea that is concentrated on several episodic heavyrains per year causes a large amount of nonpoint source pollution loading into lakes. It makes the treatment of nonpoint source discharge by methods of other countries of even rain pattern, such as retention pond or artificial wetland, impractical in Korea.4) The application rate of fertilizers in Korea is ten times as high as the average ofOECD countries. The total manure discharge from animal farming is thought to be over the capacity of soil treatment in Korea. Even though large portion of manure is composted for organic fertilizer, a lot of nutrients and organic matter emanates from organic compost. The reduction of application rate and discharge rate of phosphorus from agricultural fields should be encouraged by incentives and regulations.5) There is a lot of vegetable fields with high slopes in the upstream region of the HanRiver. Soil erosion is severe due to high slopes, and fertilizer is discharged in the form of adsorbed phosphorus on clay surface. The reduction of soil erosion in the upland area should be the major preventive policy for eutrophication. Uplands of high slope must be recovered to forest, and eroded gullies should be reformed into grass-buffered natural streams which are wider and resistant to bank erosion.

  • PDF

Quantitation of n-Hexane Extractable Material (HEM) and Estimation of Annual Pollutant Loading Rate by Sewage Sludge Applicated to Land (하수슬러지 중 노말헥산추출물질 (HEM) 함량 분석 및 토양 시용시 연간 오염부하량 추정)

  • Nam, Jae-Jak;Park, Woo-Kyun;Lim, Dong-Kyu;Lee, Sang-Hak
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.1
    • /
    • pp.45-49
    • /
    • 2002
  • To estimate annual pollutant loading rate of n-hexane extractable material (HEM) to soil 84 sewage sludge samples were analyzed. The average content of HEM was 27.7$\pm$26.5 g/kg, and ranged from 1.05 to maximum 194 g/kg. According to the number of population of the city the areas were classified as five regions, i.e. big, large, middle, small, and rural area in which the waste water treated plants were grown. The contents of HEM were 22.7$\pm$16.7, 33.3$\pm$25.8, 22.0$\pm$8.7, 31.0$\pm$38.8, 27.7$\pm$25.1 g/kg, in big, large, middle, small, and rural area, respectively. The applicated areas with sewage sludge to land also were divided as 4 sites by US EPA criteria such as agricultural, forest, public contact sites, and reclamation site. The quantitation of annual pollutant loading rate was estimated using a function (99 percentile concentration = $\bar{X}$ + 3$\sigma$) when the application amounts were in dosages of 7,000, 26,000, 18,000, 74,000 kg/ha in 5 regions, respectively. The annual pollutant loading rate of HEM to soil by sewage sludge application was maximum 1,032, 3,832, 2,653, and 10,908 kg/ha in agricultural, forest, public contact sites, and reclamation site, respectively.

Effects of Application of Solidified Sewage Sludge on the Growth of Bioenergy Crops in Reclaimed Land (간척지토양에서 하수슬러지 고화물 처리가 에너지작물의 생육에 미치는 영향)

  • An, Gi-Hong;Lee, Sun-Il;Koo, Bon-Cheol;Choi, Yong-Hwan;Moon, Youn-Ho;Cha, Young-Lok;Bark, Surn-Teh;Kim, Jung-Kon;Kim, Byung-Chul;Kim, Sang-Pyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.4
    • /
    • pp.299-307
    • /
    • 2011
  • This study was carried out to obtain the basic data for selecting the cultivatable bioenergy crops through application of solidified sewage sludge in reclaimed lands. The experimental plots consisted of the mixing with solidified sewage sludge plot (SS50), the covering with solidified sewage sludge plot (SS100), and the original reclaimed land plot (ORL) on reclaimed land for the intended landfill in Sudokwon Landfill Site Management Corporation (SLC). The growth of energy crops (Geodae-Uksae 1, Miscanthus sacchariflorus, and Phragmites australis) were investigated from May to October, 2010 in each experimental plot. The soil from ORL showed higher salinity with high contents of exchangeable $Na^+$ cation than that of SS50 and SS100. Soil properties on reclaimed land used in this study must be improved by increasing the buffering capacity of saline with the treatment of solidified sewage sludge due to the fact that the contents of organic matter (OM) in both of SS50 and SS100 were higher than that of the ORL. Thus the growth of energy crops cultivated in the solidified sewage sludge plots were better than in ORL. Geodae-Uksae 1 which showed an excellent adaptability on reclaimed land treated with the solidified sewage sludge has considerably higher biomass than those of other energy crops (M. sacchariflorus and P. australis). This study suggested that Geodae-Uksae 1 is the most suitable biomass feedstock crop for bioenergy productions, and the solidified sewage sludge may be possible to utilize as a soil cover materials for cultivation of bioenergy crops in reclaimed land.

The Effects of Solidified Sewage Sludge as a Soil Cover Material for Cultivation of Bioenergy Crops in Reclaimed Land (에너지작물 재배를 위한 간척지 토양의 토양복토재로써 하수슬러지 고화물의 이용효과)

  • An, Gi-Hong;Koo, Bon-Cheol;Choi, Yong-Hwan;Moon, Youn-Ho;Cha, Young-Lok;Bark, Surn-Teh;Kim, Jung-Kon;Yoon, Yong-Mi;Park, Kwang-Guen;Kim, Jang-Taeck
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.3
    • /
    • pp.238-247
    • /
    • 2012
  • To determine the possibility of solidified se wage sludge for use as a soil cover material in reclaimed land, the growth of energy crops and soil chemical properties investigated in each experimental plots during 2 years (2010 and 2011). The experimental plots consisted of the mixing with solidified sewage sludge plot (SS50), the covering with solidified sewage sludge plot (SS100), and the original reclaimed land plot (ORL) on reclaimed land for the intended landfill in Sudokwon Landfill Site Management Corporation (SLC). Plant height, measured in the second year (2011), was highest in the Geodae 1 grown at plots treated with solidified sewage sludge. The growth of energy crops cultivated in both SS50 and SS100 were better than in ORL. The contents of organic matter (OM) and total nitrogen (T-N) at both SS50 and SS100 were considerably higher than that of the ORL over 2 years. However, the soil from ORL showed higher salinity with high contents of exchangeable $Na^+$ cation than that of SS50 and SS100 over 2 years. We consider that soil chemical and physical properties on reclaimed land used in this study could be improved by the application of solidified sewage sludge due to following reasons. Firstly, the application of solidified sewage sludge may provide soil nutrients on reclaimed land i.e. the growth of energy crops better than in ORL, resulted in more OM and T-N contents in SS50 and SS100. Secondly, the top layers mixed or covered with solidified sewage sludge on reclaimed land may be prevented the salinity accumulation due to capillary rise to surface soil, and improved the cultivation layer for effectively propagating the rhizomes of energy crops. Thus the solidified sewage sludge may be a great soil cover materials for cultivation of bioenergy crops in reclaimed land.

A Study on Optimum Moisture Content and C/N ratio of Sewage Sludge Treatment Using Composting (퇴비화를 이용한 하수슬러지 처리에 있어서 적정 수분함량과 C/N비에 관한 연구)

  • 손현석;양원호;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.44-56
    • /
    • 1997
  • When sewage sludge is treated by cornposting, higher moisture content and lower C/N ratio on sewage sludge is problems. This paper project to alesolve two problems. The almost trends in run 3 of MC 70% are similar to these in run 1 and 4 of MC 65%. A retention time of the highest temperature (>50$\circ$C) and increase rate of temperature in run 3 are an affinity to these in run 4. Particularly, decrease rate of temperature in run 3 is slower than others and this data shows the more activity of thermal microbial in run 3 than that in others. C/N ratio trends in run 3 shows slow reaction in initial stage but, after 9 days, is similar to that in run 1 and 4. Carbon trends in each run are a similarity to C/N ratio trends. Temperature, MC, carbon and C/N ratio trends in run 5, whose C/N ratio is 15, show less microbial activity than that in run 6, whose C/N ratio is 20. But temperature increase of the beginning stage and pH of the final stage in run 5 are greater than that in run 6. Final MC and carbon content in run 5 and 6 have a similar values. That is, final MC in run 5 and 6 is 49.39% and 48.97% and final carbon content in each run is 25.15% and 22.20%. Expecially, a temperature increase and C/N ratio decrease rate of the beginning stage in run 5 are greater than these in run 6. This shows the shorter lag time in run 5 than lag time in run 6.

  • PDF