Browse > Article
http://dx.doi.org/10.7740/kjcs.2012.57.3.238

The Effects of Solidified Sewage Sludge as a Soil Cover Material for Cultivation of Bioenergy Crops in Reclaimed Land  

An, Gi-Hong (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
Koo, Bon-Cheol (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
Choi, Yong-Hwan (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
Moon, Youn-Ho (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
Cha, Young-Lok (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
Bark, Surn-Teh (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
Kim, Jung-Kon (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
Yoon, Yong-Mi (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
Park, Kwang-Guen (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
Kim, Jang-Taeck (Combustible Waste Recovery Division, SUDOKWON Landfill Site Management Corp.)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.57, no.3, 2012 , pp. 238-247 More about this Journal
Abstract
To determine the possibility of solidified se wage sludge for use as a soil cover material in reclaimed land, the growth of energy crops and soil chemical properties investigated in each experimental plots during 2 years (2010 and 2011). The experimental plots consisted of the mixing with solidified sewage sludge plot (SS50), the covering with solidified sewage sludge plot (SS100), and the original reclaimed land plot (ORL) on reclaimed land for the intended landfill in Sudokwon Landfill Site Management Corporation (SLC). Plant height, measured in the second year (2011), was highest in the Geodae 1 grown at plots treated with solidified sewage sludge. The growth of energy crops cultivated in both SS50 and SS100 were better than in ORL. The contents of organic matter (OM) and total nitrogen (T-N) at both SS50 and SS100 were considerably higher than that of the ORL over 2 years. However, the soil from ORL showed higher salinity with high contents of exchangeable $Na^+$ cation than that of SS50 and SS100 over 2 years. We consider that soil chemical and physical properties on reclaimed land used in this study could be improved by the application of solidified sewage sludge due to following reasons. Firstly, the application of solidified sewage sludge may provide soil nutrients on reclaimed land i.e. the growth of energy crops better than in ORL, resulted in more OM and T-N contents in SS50 and SS100. Secondly, the top layers mixed or covered with solidified sewage sludge on reclaimed land may be prevented the salinity accumulation due to capillary rise to surface soil, and improved the cultivation layer for effectively propagating the rhizomes of energy crops. Thus the solidified sewage sludge may be a great soil cover materials for cultivation of bioenergy crops in reclaimed land.
Keywords
bioenergy crop; Geodae 1; reclaimed land; soil cover materials; solidified sewage sludge;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Koo, B. C., Y. H. Moon, Y. S. Jang, J. E. Lee, and M. J. Seo. 2011. Bio-energy production in Sweden. Kor. J. Intl. Agri. 23(1) : 1-6.
2 Lee, S. H. and S. H. Kwon. 2005. A study on dewatering optimization and characteristics of sewage sludge. J. Nakdonggang Environmental Research Institute. 10(1) : 101-112.
3 Lewandowski, I., J. C. Clifton-Brown, J. M. O. Scurlock, W. Huisman. 2000. Miscanthus: European experience with a novel energy crop. Biomass Bioenerg. 19 : 209-227.   DOI
4 Lewandowski, I. and U. Schmidt. 2006. Nitrogen, energy and land efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agri. Eco. Environ. 112 : 335-346.   DOI
5 Moon, Y. H., B. C. Koo, Y. H. Choi, S. H. Ahn, S. T. Bark, Y. L. Cha, G. H. An, J. K. Kim, and S. J. Suh. 2010. Development of "Miscanthus" the promising bioenergy crop. Kor. J. Weed Sci. 30(4) : 330-339.   과학기술학회마을   DOI
6 NIAST. 2000. Method of Soil and Plant Analysis, National Institute of Agriculture Science and Technology.
7 Oster, J. D. and H. Frenkel. 1980. The chemistry of the reclaimation of sodic soils with gypsum and lime. Soil Sci. Soc. Am. J. 44 : 41-45.   DOI
8 Ryu, J. H., D. Y. Chung, S. W. Hwang, K. D. Lee, S. B. Lee, W. Y. Choi, S. K. Ha, and S. J. Kim. 2010. Patterns of leaching and distribution of cations in reclaimed soil according to gypsum incorporation rate. Kor. J. Soil Sci. Fert. 43(5) : 596-601.   과학기술학회마을
9 Son, J. G. and J. Y. Cho. 2009. Effect of organic material treatments on soil aggregate formation in reclaimed tidelands. Kor. J. Soil Sci. Fert. 42(3) : 201-206.   과학기술학회마을
10 Christian, D. G., A. B. Riche, and N. E. Yates. 2008. Growth, yield and mineral content of Miscanthus ${\times}$ giganteus grown as a biofuel for 14 successive harvests. Ind. Crop Prod. 28 : 320-327.   DOI
11 Chung, H. Y., J. Yu, and Y. S. Lee. 2006. Utilization of stabilized and solidified sewage sludge as a daily landfill cover material. KSCE J. Civil Engineering. 10(4) : 255-258.   과학기술학회마을   DOI
12 Jezowski, J. 2008. Yield traits of six clones of Miscanthus in the first 3 years following plnating in Poland. Ind. Crop Prod. 27 : 65-68.   DOI
13 Fernando, E. M., B. V. Maria, P. L. Stephen, and A. B. German. 2008. Meta-analysis of the effects of management factors on Miscanthus ${\times}$ giganteus growth and biomass production. Agri. Forest Meteorology 148 : 1280-1292.   DOI
14 Greef, J. M., M. Deuter, C. Jung, and J. Schondelmaier. 1997. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet. Resour. Crop Ev. 44 : 185-197.   DOI
15 Hyun, J. H., B. D. Jung, and M. G. Kim. 2008. Environmental characteristics of the solidified sewage sludge. J. Kor. Soc. Waste Management 25(7) : 605-612.   과학기술학회마을
16 Jorgensen, U., J. Mortensen, J. B. Kjeldsen, and K. U. Schwarz. 2003. Establishment, development and yield quality of fifteen Miscanthus genotypes over three years in Denmark. Acta Agriculture Scandinavica, Seciton B-Plant Soil Science, Published by Talyor and Francis, Informa Ltd Registered in England and Wales. pp. 190-199.
17 Knuteson, J. A., J. L. Richardson, D. D. Patterson, and L. Prunty. 1989. Predogenic carbonates in a calciaquoll associated with a recharge wetland. Soil Sci. Soc. Am. J. 53 : 495-499.   DOI
18 Koonin, S. E. 2006. Getting serious about biofuels? Science 311 : 435.   DOI   ScienceOn
19 Atkinson, C. J. 2009. Establishing perennial grass energy crops in the UK : A review of current propagation options for Miscanthus. Biomass Bioenergy 33 : 752-759.   DOI
20 An G. H., S.-I. Lee, B. C. Koo, Y. H. Choi, Y. H. Moon, Y. L. Cha, S. T. Bark, J. K. Kim, B. C. Kim, and S. P. Kim. 2011. Effects of application of solidified sewage sludge on the growth of bioenergy crops in reclaimed land. Kor. J. Crop Sci. 56(4) : 299-307.   과학기술학회마을   DOI   ScienceOn
21 Baek, S. H., S. U. Lee, H. B. Lim, D. G. Kim, and S. J. Kim. 2009. Influence of gypsum, popped rice hulls and zeolito on content of $Ca^{2+},\;Mg^{2+},\;Na^{+},\;K^{+}$ in reclaimed tideland soils in Kyehwado. Kor. J. Envir. Agri. 28(1) : 25-31.   DOI
22 Beale, C. V. and S. P. Long. 1995. Can perennial C4 grasses attain high efficiencies of radiant energy conversionin cool climates? Plant Cell Environ. 18 : 641-650.   DOI
23 Cho, E. S. and K. T. Yoo. 1998. Applicability of dewatered sewage sludge as landfill cover material or soil conditioner. J. Kor. Soc. Water Quality 14(3) : 331-337.   과학기술학회마을
24 Chris, S., Y. Heather, T. Caroline Taylor, C. D. Sarah, and P. L. Stephen. 2010. Feedstocks for lignocellulosic biofuels. Science 329 : 790.   DOI   ScienceOn