Browse > Article
http://dx.doi.org/10.7740/kjcs.2011.56.4.299

Effects of Application of Solidified Sewage Sludge on the Growth of Bioenergy Crops in Reclaimed Land  

An, Gi-Hong (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
Lee, Sun-Il (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
Koo, Bon-Cheol (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
Choi, Yong-Hwan (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
Moon, Youn-Ho (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
Cha, Young-Lok (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
Bark, Surn-Teh (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
Kim, Jung-Kon (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
Kim, Byung-Chul (Combustible Waste Recovery Division, SUDOKWON Landfill Site Management Crop.)
Kim, Sang-Pyeong (Combustible Waste Recovery Division, SUDOKWON Landfill Site Management Crop.)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.56, no.4, 2011 , pp. 299-307 More about this Journal
Abstract
This study was carried out to obtain the basic data for selecting the cultivatable bioenergy crops through application of solidified sewage sludge in reclaimed lands. The experimental plots consisted of the mixing with solidified sewage sludge plot (SS50), the covering with solidified sewage sludge plot (SS100), and the original reclaimed land plot (ORL) on reclaimed land for the intended landfill in Sudokwon Landfill Site Management Corporation (SLC). The growth of energy crops (Geodae-Uksae 1, Miscanthus sacchariflorus, and Phragmites australis) were investigated from May to October, 2010 in each experimental plot. The soil from ORL showed higher salinity with high contents of exchangeable $Na^+$ cation than that of SS50 and SS100. Soil properties on reclaimed land used in this study must be improved by increasing the buffering capacity of saline with the treatment of solidified sewage sludge due to the fact that the contents of organic matter (OM) in both of SS50 and SS100 were higher than that of the ORL. Thus the growth of energy crops cultivated in the solidified sewage sludge plots were better than in ORL. Geodae-Uksae 1 which showed an excellent adaptability on reclaimed land treated with the solidified sewage sludge has considerably higher biomass than those of other energy crops (M. sacchariflorus and P. australis). This study suggested that Geodae-Uksae 1 is the most suitable biomass feedstock crop for bioenergy productions, and the solidified sewage sludge may be possible to utilize as a soil cover materials for cultivation of bioenergy crops in reclaimed land.
Keywords
bioenergy crop; Geodae-Uksae 1; reclaimed land; solidified sewage sludge;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Greef, J. M., M. Deuter, C. Jung, and J. Schondelmaier. 1997. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet. Resour. Crop Ev. 44 : 185-197.   DOI   ScienceOn
2 Back, S. H., S. U. Lee, H. B. Lim, D. G. Kim, and S. J. Kim. 2009. Influence of gypsum, popped rice hulls and zeolite on contents of $Ca^{2+}$, $Mg^{2+}^$, $Na^{+}$, $Na^{+}$ in reclaimed tideland soils in Kyehwado. Kor. J. Enviro. Agri. 28(1) : 25-31.   DOI
3 Beale, C. V., and S. P. Long. 1995. Can perennial C4 grasses attain high efficiencies of radiant energy conversionin cool climates? Plant Cell Environ. 18, 641-650.   DOI   ScienceOn
4 Atkinson, C. J. 2009. Establishing perennial grass energy crops in the UK: A review of current propagation options for Miscanthus Biomass Bioenergy 33, 752-759.   DOI   ScienceOn
5 NIAST. 2000. Method of Soil and Plant Analysis, National Institute of Agriculture Science and Technology.
6 박상철. 2006. 하수슬러지의 매립지 복토재로 활용방안. 유기물자원화, 제14권, 제1호. pp. 88-101.
7 Lewandowski, I., and U. Schmidt. 2006. Nitrogen, energy and land efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agri. Eco. Environ. 112, 335-346.   DOI   ScienceOn
8 Lee, S. H., S. H Yoo, S. I. Seol, Y. An, Y. S. Jung, and S. M. Lee. 2000. Assessment of salt damage for upland-crops in Dae-Ho reclaimed soil. Kor. J. Enviro. Agri. 19(4) : 358-363.
9 Lee, S. H., K. J. Ji, Y. An, and H. M. Ro. 2003. Soil salinity and vegetation distribution at four tidal reclaimation project areas. Kor. J. Enviro. Agri. 22(2) : 79-86.   DOI
10 Moon, Y. H., B. C. Koo, Y. H. Choi, S. H. Ahn S. T. Bark, Y. L. Cha, G. H. An, J. K. Kim, and S. J. Suh. 2010. Development of "Miscanthus" the promising bioenergy crop. Kor. J. Weed Sci. 30(4) : 330-339.   DOI
11 Koonin, S. E. 2006. Getting serious about biofuels? Science 311 : 435.   DOI   ScienceOn
12 Kang, B. H., and S. I. Shim. 1998. Screening of saline tolerant plants and development of biological monitoring technique for saline stress. I. Survey of vegetation in saline region and determination of saline tolerance of the plant species of the region. Kor. J. Enviro. Agri. 17(1) : 26-33.
13 Koo, B. C., M. W. Park, C. W. Lee, E. B. Yoon, K. J. Kim, and J. G. An. 2003. Classification for types of damages caused by cold stress at different young spike development stages of barley and wheat. J. Crop Sci. 48(3) : 252-261.
14 Koo, J. W., J. K. Choi, and J. G. Son. 1998. Soil properties of reclaimed tidel lands and tidelands of western sea coast in Korea. Korean J. Soil Sci. Fert. 31(2) : 120-127.
15 Kwak, Y. S., J. K. Hwangbo, H. C. Yun, S. J. Kang, and J. S. Kang. 2005. Evaluation of sludge-derived bio-soil for landscape management. RIST 19(1) : 11-14.
16 Chou, C. H. 2009. Miscanthus plants used as an alternative biofule material: The basic studies on ecology and molecular evolution. Renew. Energ. 34 : 1908-1912.   DOI   ScienceOn
17 Choi, W. Y., K. S. Lee, J. C. Ko, H. K. Park, S. S. Kim, B. K. Kim, and C. K. Kim. Nitrogen fertilizer management for improving rice quality under different salinity conditions in tidal reclaimed area. Korean J. Crop Sci. 49(3) : 194-198.
18 Chris, S., Y. Heather, T. Caroline Taylor, C. D. Sarah, and P. L. Stephen. 2010. Feedstocks for lignocellulosic biofuels. Science 329 : 790.   DOI   ScienceOn