DOI QR코드

DOI QR Code

Effects of Application of Solidified Sewage Sludge on the Growth of Bioenergy Crops in Reclaimed Land

간척지토양에서 하수슬러지 고화물 처리가 에너지작물의 생육에 미치는 영향

  • An, Gi-Hong (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Lee, Sun-Il (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Koo, Bon-Cheol (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Choi, Yong-Hwan (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Moon, Youn-Ho (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Cha, Young-Lok (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Bark, Surn-Teh (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Kim, Jung-Kon (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Kim, Byung-Chul (Combustible Waste Recovery Division, SUDOKWON Landfill Site Management Crop.) ;
  • Kim, Sang-Pyeong (Combustible Waste Recovery Division, SUDOKWON Landfill Site Management Crop.)
  • 안기홍 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 이선일 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 구본철 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 최용환 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 문윤호 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 차영록 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 박선태 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 김중곤 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 김병철 (수도권매립지 관리공사 가연성사업실) ;
  • 김상평 (수도권매립지 관리공사 가연성사업실)
  • Received : 2011.07.22
  • Accepted : 2011.09.16
  • Published : 2011.12.30

Abstract

This study was carried out to obtain the basic data for selecting the cultivatable bioenergy crops through application of solidified sewage sludge in reclaimed lands. The experimental plots consisted of the mixing with solidified sewage sludge plot (SS50), the covering with solidified sewage sludge plot (SS100), and the original reclaimed land plot (ORL) on reclaimed land for the intended landfill in Sudokwon Landfill Site Management Corporation (SLC). The growth of energy crops (Geodae-Uksae 1, Miscanthus sacchariflorus, and Phragmites australis) were investigated from May to October, 2010 in each experimental plot. The soil from ORL showed higher salinity with high contents of exchangeable $Na^+$ cation than that of SS50 and SS100. Soil properties on reclaimed land used in this study must be improved by increasing the buffering capacity of saline with the treatment of solidified sewage sludge due to the fact that the contents of organic matter (OM) in both of SS50 and SS100 were higher than that of the ORL. Thus the growth of energy crops cultivated in the solidified sewage sludge plots were better than in ORL. Geodae-Uksae 1 which showed an excellent adaptability on reclaimed land treated with the solidified sewage sludge has considerably higher biomass than those of other energy crops (M. sacchariflorus and P. australis). This study suggested that Geodae-Uksae 1 is the most suitable biomass feedstock crop for bioenergy productions, and the solidified sewage sludge may be possible to utilize as a soil cover materials for cultivation of bioenergy crops in reclaimed land.

본 연구는 수도권 매립예정 간척지 중 대규모의 유휴지에 농촌진흥청 국립식량과학원에서 특허 출원한 물억새의 일종인 거대억새1호, 간척지 자생 물억새 및 자생 갈대의 에너지 작물을 바이오에너지 생산 목적으로 쓰레기 매립 예정지에서 재배한 최초의 연구로서 매립예정 간척지의 적응성 및 활용가치가 높은 에너지 작물을 선정함과 동시에 간척지 토양의 하수슬러지 고화물 처리로 인한 에너지 작물의 생육 상태 모니터링 및 토양화학성의 변화를 조사하였다. 1. 각 시험구의 토양 pH범위는 6.7~8.3이었으며 하수슬러지 고화물을 처리한 시험구는 원지반토보다 낮은 pH를 나타내었다. 원지반토의 염농도는 하수슬러지 고화물을 처리한 시험구에 비해 높은 치환성 나트륨 함량을 보이며 높은 염농도를 나타내었다. 2. 하수슬러지 고화물 처리구의 토양 유기물 함량은 재식 초기에는 원지반토에 비해 4배와 7배 높았고, 생육후기에도 2.9~5.6%로 원지반토의 0.75%에 비해 많았다. 3. 각 시험구의 에너지 작물 생육조사결과 거대억새1호가 다른 에너지 작물에 비해 간척지 토양에 하수슬러지 고화물을 투입한 시험구에 대한 적응력이 우수한 것으로 판단되었다. 4. 간척지에 하수슬러지 고화물의 투입으로 인하여 염해 완충능이 향상되는 등 토양이화학성이 개선되었으며, 에너지 작물의 생육이 원지반토에 비해 양호했던 점을 보아 매립예정 간척지의 토양 복토제로서 활용 가능성을 확인하였다. 5. 각 시험구의 에너지 작물 수확 후 마른줄기 수량을 조사한 결과 거대억새1호는 타 에너지 작물에 비해 가장 높은 바이오매스량을 나타내며, 거대억새1호는 바이오에너지 생산을 위한 최적의 에너지 작물임을 확인하였다.

Keywords

References

  1. 박상철. 2006. 하수슬러지의 매립지 복토재로 활용방안. 유기물자원화, 제14권, 제1호. pp. 88-101.
  2. Atkinson, C. J. 2009. Establishing perennial grass energy crops in the UK: A review of current propagation options for Miscanthus Biomass Bioenergy 33, 752-759. https://doi.org/10.1016/j.biombioe.2009.01.005
  3. Back, S. H., S. U. Lee, H. B. Lim, D. G. Kim, and S. J. Kim. 2009. Influence of gypsum, popped rice hulls and zeolite on contents of $Ca^{2+}$, $Mg^{2+}^$, $Na^{+}$, $Na^{+}$ in reclaimed tideland soils in Kyehwado. Kor. J. Enviro. Agri. 28(1) : 25-31. https://doi.org/10.5338/KJEA.2009.28.1.025
  4. Beale, C. V., and S. P. Long. 1995. Can perennial C4 grasses attain high efficiencies of radiant energy conversionin cool climates? Plant Cell Environ. 18, 641-650. https://doi.org/10.1111/j.1365-3040.1995.tb00565.x
  5. Choi, W. Y., K. S. Lee, J. C. Ko, H. K. Park, S. S. Kim, B. K. Kim, and C. K. Kim. Nitrogen fertilizer management for improving rice quality under different salinity conditions in tidal reclaimed area. Korean J. Crop Sci. 49(3) : 194-198.
  6. Chris, S., Y. Heather, T. Caroline Taylor, C. D. Sarah, and P. L. Stephen. 2010. Feedstocks for lignocellulosic biofuels. Science 329 : 790. https://doi.org/10.1126/science.1189268
  7. Chou, C. H. 2009. Miscanthus plants used as an alternative biofule material: The basic studies on ecology and molecular evolution. Renew. Energ. 34 : 1908-1912. https://doi.org/10.1016/j.renene.2008.12.027
  8. Greef, J. M., M. Deuter, C. Jung, and J. Schondelmaier. 1997. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet. Resour. Crop Ev. 44 : 185-197. https://doi.org/10.1023/A:1008693214629
  9. Kang, B. H., and S. I. Shim. 1998. Screening of saline tolerant plants and development of biological monitoring technique for saline stress. I. Survey of vegetation in saline region and determination of saline tolerance of the plant species of the region. Kor. J. Enviro. Agri. 17(1) : 26-33.
  10. Koo, B. C., M. W. Park, C. W. Lee, E. B. Yoon, K. J. Kim, and J. G. An. 2003. Classification for types of damages caused by cold stress at different young spike development stages of barley and wheat. J. Crop Sci. 48(3) : 252-261.
  11. Koo, J. W., J. K. Choi, and J. G. Son. 1998. Soil properties of reclaimed tidel lands and tidelands of western sea coast in Korea. Korean J. Soil Sci. Fert. 31(2) : 120-127.
  12. Koonin, S. E. 2006. Getting serious about biofuels? Science 311 : 435. https://doi.org/10.1126/science.1124886
  13. Kwak, Y. S., J. K. Hwangbo, H. C. Yun, S. J. Kang, and J. S. Kang. 2005. Evaluation of sludge-derived bio-soil for landscape management. RIST 19(1) : 11-14.
  14. Lewandowski, I., and U. Schmidt. 2006. Nitrogen, energy and land efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agri. Eco. Environ. 112, 335-346. https://doi.org/10.1016/j.agee.2005.08.003
  15. Lee, S. H., S. H Yoo, S. I. Seol, Y. An, Y. S. Jung, and S. M. Lee. 2000. Assessment of salt damage for upland-crops in Dae-Ho reclaimed soil. Kor. J. Enviro. Agri. 19(4) : 358-363.
  16. Lee, S. H., K. J. Ji, Y. An, and H. M. Ro. 2003. Soil salinity and vegetation distribution at four tidal reclaimation project areas. Kor. J. Enviro. Agri. 22(2) : 79-86. https://doi.org/10.5338/KJEA.2003.22.2.079
  17. Moon, Y. H., B. C. Koo, Y. H. Choi, S. H. Ahn S. T. Bark, Y. L. Cha, G. H. An, J. K. Kim, and S. J. Suh. 2010. Development of "Miscanthus" the promising bioenergy crop. Kor. J. Weed Sci. 30(4) : 330-339. https://doi.org/10.5660/KJWS.2010.30.4.330
  18. NIAST. 2000. Method of Soil and Plant Analysis, National Institute of Agriculture Science and Technology.

Cited by

  1. Preliminary screening of leafy vegetable New Zealand spinaches (Tetragonia tetragonioides) native to Korea vol.39, pp.4, 2012, https://doi.org/10.7744/cnujas.2012.39.4.515
  2. Growth of Bioenergy Crop Miscanthus sacchariflorus cv. Geodae 1 on Barren Reclaimed Land Applied with Solidified Sewage Sludge in Landfill Sites vol.60, pp.3, 2015, https://doi.org/10.7740/kjcs.2015.60.3.374
  3. Transitional Patterns of Vegetation in Reclaimed Land Applied with Solidified Sewage Sludge vol.60, pp.3, 2015, https://doi.org/10.7740/kjcs.2015.60.3.381
  4. Change in Soil Properties after Planting Giant Miscanthus vol.55, pp.6, 2013, https://doi.org/10.5389/KSAE.2013.55.6.069
  5. The Effects of Solidified Sewage Sludge as a Soil Cover Material for Cultivation of Bioenergy Crops in Reclaimed Land vol.57, pp.3, 2012, https://doi.org/10.7740/kjcs.2012.57.3.238
  6. Xylanase Activity of Bacillus pumilus H10-1 Isolated from Ceratotherium simum Feces vol.29, pp.5, 2014, https://doi.org/10.7841/ksbbj.2014.29.5.316
  7. Optimization of Cellulolytic Enzyme Production for newly isolated Bacillus sp. H9-1 from Herbivore Feces vol.28, pp.1, 2013, https://doi.org/10.7841/ksbbj.2013.28.1.42
  8. The estimation of Miscanthus×giganteus’ adaptive potential for cultivation on the mining and post-mining lands in Ukraine pp.1614-7499, 2018, https://doi.org/10.1007/s11356-018-3741-0