• Title/Summary/Keyword: transverse ventilation system

Search Result 25, Processing Time 0.028 seconds

Numerical Study on the Supply and Exhaust Port Size and Fire Management Method in the Semi-transverse Ventilation System for Road Tunnel (도로터널 반횡류환기시스템에서 급배기 포트개도 및 화재시 운영방안에 관한 수치해석적 연구)

  • Ryu, Ji-Oh;Kim, Jin-Su;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.68-74
    • /
    • 2016
  • In semi-transverse ventilation system applied for road tunnel, adjustment of the port opening ratio is an essential part for uniform airflow rate per unit length over the entire tunnel. However, it has not been considered decently throughout the design process and operating of the tunnel. Therefore, in this study, we developed a program for the calculation of the opening size ratio of supply or exhaust port in transverse ventilation system and carried out the research to present a management plan for the port. In supply duct system, the opening size of the port had a tendency to increase and then decrease later when it gradually becomes closer toward the bulkhead at the beginning of the duct the minimum opening degree is to appeared as 56%. In the exhaust system, port size is the smallest at the beginning of duct as 15%, has shown a tendency to increase towards the bulk head. As results of estimating the air flow rate for 300 m intervals, the exhaust flow rate in the center of tunnel appeared to be extremely low as 8.1% and 12.5% when port size is constant and is adjusted supply type. Thus, even if the normal ventilation efficiency is declines, yet it is highly recommend adjusting the port size in order to obtain a uniform flow rate at fire accidents.

The study of ventilation system during fire in road tunnel with bi-directional or congested unidirectional traffic (교통정체가 심한 도로터널에 대한 화재시 제연방식에 관한 연구)

  • Yoo, Ji-Oh;Shin, Hyun-Jun;Nam, Chang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.474-479
    • /
    • 2008
  • The purpose of this paper is to estimate the fire safety in tunnels with bi-directional and/or congested unidirectional traffic where there may be people on both sides of the fire. Therefore, the spread and movement of smoke are simulated by Fire Dynamic Simulator code under different ventilation systems, longitudinal, semi-transverse, large port exhaust system. And as quantitative risk index, FED (Fractional Effective Dose) for each ventilation system are calculated and compared by existed code developed previous research.

  • PDF

Study of the Effective Fire and Smoke Control in Deep Underground Tunnel with Transverse Ventilation (대심도 터널 화재 시 균일배기 환기방식에서의 최적배연 연구)

  • Kim, Jong-Yoon;Lim, Kyung-Bum;Jeon, Yong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • This study represents the effective fire and smoke control in the case of fire in deep underground tunnels, even if the exhaust system can be calculated, the optimal smoke capacity can be determined by establishing technical standards for the transverse ventilation system focusing on the design as a basis for deriving the parameters for utilization. Numerical analyses were performed using the FDS program as a function of the unsteady flow in a deep underground tunnel fire. The analysis results were calculated within 250 m smoke using an inside wind velocity of 0m/s when the capacity of smoke was exhausted, $80m^3/s$, whereas in case of an internal wind velocity of 3m/s, the capacity of smoke exhaust was $197.1m^3/s$, showing an approximately 2.5 fold increase.

Case Study of the Longest Roadway Tunnel in Korea, Baehuryeong Tunnel (국내 최장대 양방향 도로터널 설계사례-배후령터널)

  • Lee Seon-Bok;Je Hae-Chan
    • Tunnel and Underground Space
    • /
    • v.15 no.6 s.59
    • /
    • pp.432-440
    • /
    • 2005
  • Baehuryeong tunnel connects Chuncheon with Hwacheon in Kangwon, Korea, This tunnel is a single tunnel with 5,057 m long and two bidirectional lanes which will be extended into low lanes in the future. The estimated construction period of Baehuryeong tunnel is approximately 55 months. This tunnel will become the longest bidirectional roadway tunnel in Korea. Compared to a twin tunnel, a bidirectional single tunnel has two major disadvantages with regard to the ventilation system and ease of escape during fire. For these reasons, a service tunnel and the transverse ventilation system are planned first time in Korea. In case of fire, the tunnel ventilation design aims to maintain a smoke free layer for passenger evacuation. The geology of Baehuryeong tunnel site is mainly composed of gneiss and granite. Baehuryeong fault is a mainly large scale fault which stands vertical and parallels with tunnel direction. The influenced zone of this fault is within 70 m. Baehuryeong tunnel was designed that it was separated with the distance of more than 100 m from Baehuryeong fault for its safety.

Scaled model tests for improvement and applicability of the transverse smoke control system on tunnels (횡류식 제·배연 시스템의 개선 및 적용성 분석을 위한 모형실험 연구)

  • Kim, Hyo-Gyu;Baek, Doo-San;Kim, Jae-Hyun;Lee, Seong-Won;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.563-574
    • /
    • 2020
  • Currently, road tunnels and railroad tunnels are building smoke control systems to emit toxic gases and smoke from fires. Among the various smoke control systems, the transverse smoke control system has the disadvantage that air supply or exhaust is performed on only half of the cross-section, rather than air supply or exhaust on the entire cross-section of the tunnel as air is supplied or exhausted by partitioning the wind path. Therefore, this study analyzed the effect of exhaustion through numerical analysis and scaled model tests on the zoning smoke control system, which improved the limitations of the transverse smoke control system. As a result of the scaled model test, the transverse ventilation system exhibited a 25.6% smoke control rate based on the state where no smoke was controled, and zoning smoke control system showed a smoke control rate of 40.8%. In addition, as a result of numerical analysis, it was found that transverse ventilation system did not control fire smoke spreading from the tunnel and continued to spread. On the other hand, zoning smoke control system was found to be smoke controled within a certain section due to the air curtain effect and the flue gas effect.

A study on the ventilation control method of road tunnel for small vehicles (소형차 전용 도로터널의 환기기 제어방안에 대한 연구)

  • Ryu, Ji-Oh;Lee, Hu-Young;Chang, Ji-Don
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.749-762
    • /
    • 2019
  • In recent years, in urban areas, underground of roads are being promoted in order to resolve traffic congestion and to secure green spaces, and due to the low ratio of large vehicles, they are planned or constructed as road tunnels for small cars only. In addition, the tunnels being built in the city is a tendency to be enlarged to play the role of main roads. Accordingly, the capacity of the ventilation system is increasing and various ventilation methods are required, and the importance of maintenance after the completion of the tunnel such as the operating cost of the ventilation system is emphasized. Therefore, the need for optimization of the operation stage for reducing the power consumption of the ventilation system and the study of the ventilation system operation control logic is increasing. In this study, the study on the necessity of the optimization of operation stage and control logic of the ventilation system was carried out to realize the energy-saving operation for the small car only passing through tunnels which is applied of ① jet fan and combination ventilation system (② jet fan + air purifying equipment, ③ jet fan + vertical shaft, ④ jet fan + supply air semi-transverse). As a result of this study, there can be various operating combinations in the case of the combined ventilation system, and even though the amount of ventilation air is the same, the operating power varies greatly according to the operating combinations. It was found that operating the axial fan first rather than the jet fan first operation method has an effect on power saving.

Experimental Studies on PSC Airpit-Slab with Fire Resistance Panel under Static and Dynamic Loads (내화패널이 부착된 프리캐스트 PSC 풍도슬래브의 정적/동적하중에 관한 실험연구)

  • Kim, Tae Kyun;Bae, Jeong;Choi, Heon;Min, In Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.245-253
    • /
    • 2012
  • In the longway tunnel and underground traffic road, the structure of transverse ventilation system is constructed by the airpit slab. In this study, the full scale specimens of the PSC airpit slab that attached fire resistance panel are performed the static and dynamic loading tests for evaluation of bending capacity. The first of all, it confirmed the evaluations about the fundamental efficiency of the fire resistance panel and PSC slab by the 3-point bending test and pull-off test. The tests are performed for evaluation of the bending resistance under ultimate static load and the bonded capacity under dynamic fatigue load. A fatigue test is performed for an investigation of the effect on wind pressure that is developed by transit of traffic. The damage or debonding on surface between fire resistance panel and PSC slab was not developed in dynamic fatigue load test, also the behavior of the specimens is very stable and the debonding of the fire resistance panel attached at the bottom surface of PSC slab was not developed in static load test, too. Therefore, the crack or debonding of the fire resistance panel will be not developed by external loads during the construction or completion of the precast fire resistance system.

A Study on the Effective Fire and Smoke Control in Semi-Transverse Ventilation (균일배기 환기방식에서의 배연특성에 관한 연구)

  • Jeon, Yong-Han;Kim, Jong-Yoon;Seo, Young-Ho;Yoo, Oh-Ji;Han, Sang-Pil
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.90-94
    • /
    • 2010
  • In this study it is intended to review the moving characteristics of smoke by performing visualization simulation for the calculation of the optimal smoke exhaust air volume in case a fire occurs in tunnels where transverse ventilation is applied, and to obtain basic data necessary for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions under various conditions. As a result of this study, if it was assumed 0 critical velocity in the tunnel, the smoke exhaust air volume was limited within 250 meter in the road-tunnel disaster prevention indicator and the exhaust efficiency was from 55.1% to 95.8% in the result of this study. If the wind velocity is in the tunnel, the exhaust rate intends to increase rapidly and the exhaust efficiency is decreased. In addition, if the wind velocity is increased, the exhaust rate should be increased in compared with the generation rate of smoke in maximum 1.8 or 1.04 times. In this study, when the wind velocity is in the tunnel, the limited exhaust rate is $84m^3/s{\cdot}250m$. And if it was assumed 1.75 m/s critical velocity in the tunnel, the exhaust rate would be defined $393m^3/s{\cdot}250m$($Q_E$ = 80 + 5Ar).

A study on the operation characteristics of oversized exhaust port applicable to double-deck tunnel (복층터널에 적용 가능한 화재 연동형 대배기구 운영 특성 분석 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Yangkyun;Park, Byoungjik;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.887-895
    • /
    • 2019
  • Recently, the number of underground road development projects has been increasing to solve traffic problems in the national capital region and metropolitan areas with intensified overcrowding, and there has been a tendency to plan underground roads by applying a double-deck tunnel technology that has advantages in constructability and economical efficiency. The double-deck tunnel has a structure where one excavation section is divided into two parts and used as up and down lines, and is mainly used as a road for small vehicles only due to its low floor height. In addition, due to the small cross-sectional area, it has characteristics different from those of general road tunnels in terms of ventilation and disaster prevention. In this regard, this study proposed an operational plan that applies an oversized exhaust system, which is one of semi-transverse ventilation systems, to small cross-sectional tunnels like double-deck tunnel with low floor height, and a comparative analysis between smoke exhaust characteristics according to the fire occurrence locations and oversized exhaust systems was conducted using the Fire Dynamics Simulator (FDS). The results showed that unlike uniform exhaust, intensive smoke exhaust using the oversized exhaust port maximized the delay effect of smoke diffusion and limited the smoke within 50 m above and below the fire point.