• Title/Summary/Keyword: transposon mutagenesis

Search Result 45, Processing Time 0.035 seconds

Insertional Transposon Mutagenesis of Xanthomonas oryzae pv. oryzae KXO85 by Electroporation

  • Lee, Byoung-Moo;Park, Young-Jin;Park, Dong-Suk;Kang, Hee-Wan;Lee, Gil-Bok;Hahn, Jang-Ho
    • The Plant Pathology Journal
    • /
    • v.20 no.3
    • /
    • pp.229-233
    • /
    • 2004
  • The bacterial leaf blight, which is caused by Xantho-monas oryzae pv. oryzae, is the most damaging and intractable disease of rice. To identify the genes involved in the virulence mechanism of transposon TnS complex, which possesses a linearized transposon and transposase, was successfully introduced into X. oryzae pv. oryzae by electroporation. The transposon mutants were selected and confirm the presence of transposition in X. oryzae pv. oryzae by the PCR amplification of transposon fragments and the Southern hybridization using these mutants. Furthermore, transposon insertion sites in the mutant bacterial chromosome were deter-mined by direct genomic DNA sequencing using transposon-specific primers with ABI 3100 Genetic Analyzer. Efficiency of transposition was influenced mostly by the competence status of X. oryzae pv. oryzae cells and the conditions of electroporation. These results indicated that the insertion mutagenesis strategy could be applied to define function of uncharacterized genes in X. oryzae pv. oryzae.

Applications of Transposon-Based Gene Delivery System in Bacteria

  • Choi, Kyoung-Hee;Kim, Kang-Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.217-228
    • /
    • 2009
  • Mobile genetic segments, or transposons, are also referred to as jumping genes as they can shift from one position in the genome to another, thus inducing a chromosomal mutation. According to the target site-specificity of the transposon during a transposition event, the result is either the insertion of a gene of interest at a specific chromosomal site, or the creation of knockout mutants. The former situation includes the integration of conjugative transposons via site-specific recombination, several transposons preferring a target site of a conserved AT-rich sequence, and Tn7 being site-specifically inserted at attTn7, the downstream of the essential glmS gene. The latter situation is exploited for random mutagenesis in many prokaryotes, including IS (insertion sequence) elements, mariner, Mu, Tn3 derivatives (Tn4430 and Tn917), Tn5, modified Tn7, Tn10, Tn552, and Ty1, enabling a variety of genetic manipulations. Randomly inserted transposons have been previously employed for a variety of applications such as genetic footprinting, gene transcriptional and translational fusion, signature-tagged mutagenesis (STM), DNA or cDNA sequencing, transposon site hybridization (TraSH), and scanning linker mutagenesis (SLM). Therefore, transposon-mediated genetic engineering is a valuable discipline for the study of bacterial physiology and pathogenesis in living hosts.

Isolation and Characterization of Transposon \ulcorner¨ªKm-Mediated Nonpathogenic Mutants of Xanthomonas campestris pv. vesicatoria (고추 세균성 반점병균의 비병원성 돌연변이체 분리 및 생리적 특성)

  • 윤영채;김용식;조용섭
    • Korean Journal Plant Pathology
    • /
    • v.11 no.3
    • /
    • pp.265-270
    • /
    • 1995
  • Transposon mutation of Xanthomonas campestris pv. vesicatoria (Xcv) was induced by using transposon omegon ($\Omega$)-Km (Tn $\Omega$Km), which was confirmed by resistance to kanamycin (KMr), and nonpathogenic mutants were selected through the inoculation test on pepper plants. The mutagenesis frequency was about 6$\times$10-8, and 53 out of 2,000 Kmr bacterial colonies tested were nonpathogenic to the pepper cultivar Cheung-Hong. Optimum conditions for the Tn $\Omega$Km mutagenesis of Xcv were Luria Bertani (LB) broth medium for culture of Xcv, yeast extract-dextrose-CaCO3 (YDC) agar medium for selection of Tn $\Omega$Km-mediated mutants, and over 1 to 2 in the ratio of the donor (Escherichia coli S17-1 with the plasmid pJFF350 $\Omega$Km) and the recipient (Xcv) in the culture for the mutagenesis. One of the 4 nonpathogenic mutants (WNP1, WNP3, WNP4 and WNP5), which had been reconfirmed through the inoculation on pepper cv. Dabokgun, showed no differences in the production of exoenzymes such as protease and polygalacturonase and extracellular polysaccharides in vitro and the bacterial growth rate from those of the wild type of Xcv.

  • PDF

Transposon Tn5 Mutagenesis of Bradyrhizobium japonicum: A Histidine Auxotrophic Mutant of B. japonicum Shows Defective Nodulation Phenotype on Soybean

  • So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.110-113
    • /
    • 1995
  • Transposon Tn5 was used to induce random insertional mutations in Bradyrhizobium japonicum, a soybean endosymbiont. By genomic Southern blot analysis, transposition events were found to have occurred randomly throughout the B. japonicum genome. After screening 3, 626 mutants by auxotrophy test, a histidine auxotroph was isolated. Upon plant infection test, the His mutant showed a 3~4 day delay in nodule formation.

  • PDF

Isolation of Nif$^{-10}$ -mutants through transposon mutagenesis in enterobacter agglomerans 339 (Enterobacter agglomerans 339에 있어서 transposon umtagenesis를 통한 Nif$^{-10}$ -mutants 분리 동정)

  • 민병환;이호자
    • Korean Journal of Microbiology
    • /
    • v.26 no.1
    • /
    • pp.20-26
    • /
    • 1988
  • Three $NIf^{-}$ -mutants were isolated from Enterbacter agglomerans 339 through the transposon umtagenesis using a RP4-mobilising system for its nif-gene characterization. All mutants hadn't acetylene-reduction ability. Then we confirmed that Tn5 was inserted into all conserved nif-plasmids through the Southern Hybridization.

  • PDF

Enhanced Lycopene Production in Recombinant Escherichia coli by Random Transposon and NTG Mutagenesis (Transposon 및 NTG 돌연변이를 이용한 재조합 대장균의 라이코펜 생산성 증진)

  • Yoon, Sang-Hwal;Ko, Min-Su;Park, Kyoung-Ae;Jung, Kyung-Hwa;Shin, Yong-Chul;Lee, Young-Mi;Lee, Sook-Hee;Kim, Seon-Won
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.90-95
    • /
    • 2006
  • Escherichia coli harboring pAC-LYCO4 and pDdxs was used for lycopene production. Three wild type strains of E. coli OW1, MG1655, and W3110 were compared with DH5${\alpha}$ used before for lycopene production. Lycopene productivity of E. coli MG1655 was similar to DH5${\alpha}$ and the highest among those wild type strain. Therefore, MG1655 strain was used for random transposon and NTG mutagenesis to increase lycopene productivity. Through transposon mutation, five transposon mutants with increased lycopene productivity were obtained. It was found that genes knocked out by transposon insertion were treB in Tn1 mutant, B2436 in Tn2 mutant, and rfaH in Tn3, 4, and 5 mutants. Lycopene productivity was the highest in Tn4 mutant among the Tn mutants, which was 6-fold and 8-fold higher in lycopene concentration and content, respectively, in comparison with those obtained with wild type strain. NTG4 mutant was acquired with NTG mutation. The highest lycopene productivity of 6 mg/L and 4 mg/g DCW was obtained from the NTG4 mutant when arabinose of 0.013 mM was added for induction of dxs, rate-limiting gene of MEP pathway. The lycopene productivity of NTG4 mutant was increased 18-fold and 12-fold in lycopene concentration and content, respectively when comparing with the wild type strain.

Isolation of Citrobacter sp. Mutants Defective in Decolorization of Brilliant Green by Transposon Mutagenesis

  • Jang, Moon-Sun;Lee, Young-Mi;Park, Yong-Lark;Cho, Young-Su;Lee, Young-Choon
    • Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.139-142
    • /
    • 2004
  • To identify genes involved in the decolorization of brilliant green, we isolated random mutants generated by transposon insertion in brilliant green-decolorizing bacterium, Citrobacter sp. The resulting mutant bank yielded 19 mutants with a complete defect in terms of the brilliant green color removing ability. Southern hybridization with a Tn5 fragment as a probe showed a single hybridized band in 7 mutants and these mutants appeared to have insertions at different sites of the chromosome. Tn5-inserted genes were isolated and the DNA sequence flanking Tn5 was determined. By comparing these with a sequence database, putative protein products encoded by bg genes were identified as follows: bg 3 as a LysR-type regulatory protein; bg 11 as a MalG protein in the maltose transport system; bg 14 as an oxidoreductase; and bg 17 as an ABC transporter. The sequences deduced from the three bg genes, bg 2, bg 7 and bg 16, showed no significant similarity to any protein with a known function, suggesting that these three bg genes may encode unidentified proteins responsible for the decolorization of brilliant green.

Identification of virulence-associated genes of Erwinia amylovora by transposon mutagenesis

  • Seung Yeup Lee;Hyun Gi Kong;In Jeong Kang;Hyeonseok Oh;Hee-Jong Woo;Eunjung Roh
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.2
    • /
    • pp.241-247
    • /
    • 2023
  • Erwinia amylovora , which causes fire blight disease on apple and pear trees, is one of the most important phytopathogens because of its devastating impact. Currently, the only way to effectively control fire blight disease is through the use of antibiotics such as streptomycin, kasugamycin, or oxytetracycline. However, problems with the occurrence of resistant strains due to the overuse of antibiotics are constantly being raised. It is therefore necessary to develop novel disease control methods through an advanced understanding of the pathogenesis mechanism of E. amylovora . To better understand the pathogenesis of E. amylovora , we investigated unknown virulence factors by random mutagenesis and screening. Random mutants were generated by Tn5 transposon insertion, and the pathogenicity of the mutants was assessed by inoculation of the mutants on apple fruitlets. A total of 17 avirulent mutants were found through screening of 960 random mutants. Among them, 14 mutants were already reported as non-pathogenic strains, while three mutants, TS3128_M2899 (ΔSUFU ), TS3128_M2939 (ΔwcaG ), and TS3128_M3747 (ΔrecB ), were not reported. Further study of the association between E. amylovora pathogenicity and these 3 novel genes may provide new insight into the development of control methods for fire blight disease.

Transposable Genetic Elements, the Mechanisms of Transposition, and Their Uses in Genetic Studies (게놈 내 전이성 인자와 그 이동기구 및 이용)

  • 한창열;한지학
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.5
    • /
    • pp.241-260
    • /
    • 1995
  • Transposons, present in the genomes of all living organisms, are genetic element that can change positions, or transpose, within the genome. Most genomes contain several kinds of transposable elements and the molecular details of the mechanisms by which these transposons move have recently been uncovered in many families of transposable elements. Transposition is brought about by an enzyme known as transposaese encoded by the autonomous transposon itself, but, in the unautonomous transposon lacking the gene encoding the transposase, movement occurs only at the presence of the enzyme encoded by the autonomous one. There are two types of transposition events, conservative and replicative transposition. In the former the transposon moves without replication, both strands of the DNA moving together from one place to the other while in the latter the transposition frequently involves DNA replication, so one copy of transposon remains at its original site as another copy insole to a new site. The insertion of transposon into a gene can prevent it expression whereas excision from the gene may restore the ability of the gene to be expressed. There are marked similarities between transposons and certain viruses having single stranded Plus (+) RNA genomes. Retrotransposons, which differ from the ordinary transposons in that they transpose via an RNA-intermediate, behave much like retroviruses and have a structure of integrated retrovial DNA when they are inserted to a new target site. An insertional mutagenesis called transposon-tagging is now being used in a number of plant species to isolate genes involved in developmental and metabolic processes which have been proven difficult to approach by the traditional methods. Attempts to device a transposon-tagging system based on the maize Ac for use in heterologous species have been made by many research workers.

  • PDF