References
- Akerley, B. J., E. J. Rubin, A. Camilli, D. J. Lampe, H. M. Robertson, and J. J. Mekalanos. 1998. Systematic identification of essential genes by in vitro mariner mutagenesis. Proc. Natl. Acad. Sci. U.S.A. 95: 8927-8932 https://doi.org/10.1073/pnas.95.15.8927
- Akerley, B. J., E. J. Rubin, V. L. Novick, K. Amaya, N. Judson, and J. J. Mekalanos. 2002. A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl. Acad. Sci. U.S.A. 99:966-971 https://doi.org/10.1073/pnas.012602299
- Albano, M. A., J. Arroyo, B. I. Eisenstein, and N. C. Engleberg. 1992. phoA gene fusions in Legionella pneumophila generated in vivo using a new transposon, MudphoA. Mol. Microbiol. 6: 1829-1839 https://doi.org/10.1111/j.1365-2958.1992.tb01355.x
- Badarinarayana, V., P. W. Estep 3rd, J. Shendure, J. Edwards, S. Tavazoie, F. Lam, and G. M. Church. 2001. Selection analyses of insertional mutants using subgenic-resolution arrays. Nat. Biotechnol. 19: 1060-1065 https://doi.org/10.1038/nbt1101-1060
- Bainton, R. J., K. M. Kubo, J. N. Feng, and N. L. Craig. 1993. Tn7 transposition: Target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell 72: 931-943 https://doi.org/10.1016/0092-8674(93)90581-A
- Baitin, D. M., E. N. Zaitsev, and V. A. Lanzov. 2003. Hyperrecombinogenic RecA protein from Pseudomonas aeruginosa with enhanced activity of its primary DNA binding site. J. Mol. Biol. 328: 1-7 https://doi.org/10.1016/S0022-2836(03)00242-0
- Biery, M. C., M. Lopata, and N. L. Craig. 2000. A minimal system for Tn7 transposition: The transposon-encoded proteins TnsA and TnsB can execute DNA breakage and joining reactions that generate circularized Tn7 species. J. Mol. Biol. 297: 25-37 https://doi.org/10.1006/jmbi.2000.3558
- Bourhy, P., H. Louvel, I. Saint Girons, and M. Picardeau. 2005. Random insertional mutagenesis of Leptospira interrogans, the agent of leptospirosis, using a mariner transposon. J. Bacteriol. 187: 3255-3258 https://doi.org/10.1128/JB.187.9.3255-3258.2005
- Braunstein, M., T. I. Griffin, J. I. Kriakov, S. T. Friedman, N. D. Grindley, and W. R. Jacobs Jr. 2000. Identification of genes encoding exported Mycobacterium tuberculosis proteins using a Tn552'phoA in vitro transposition system. J. Bacteriol. 182:2732-2740 https://doi.org/10.1128/JB.182.10.2732-2740.2000
- Bubeck, A., M. Wagner, Z. Ruzsics, M. Lotzerich, M. Iglesias, I. R. Singh, and U. H. Koszinowski. 2004. Comprehensive mutational analysis of a herpesvirus gene in the viral genome context reveals a region essential for virus replication. J. Virol. 78: 8026-8035 https://doi.org/10.1128/JVI.78.15.8026-8035.2004
- Butterfield, Y. S., M. A. Marra, J. K. Asano, S. Y. Chan, R. Guin, M. I. Krzywinski, et al. 2002. An efficient strategy for large-scale high-throughput transposon-mediated sequencing of cDNA clones. Nucleic Acids Res. 30: 2460-2468 https://doi.org/10.1093/nar/30.11.2460
- Caiazza, N. C. and G. A. O'Toole. 2004. SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14. J. Bacteriol. 186: 4476-4485 https://doi.org/10.1128/JB.186.14.4476-4485.2004
- Chan, K., C. C. Kim, and S. Falkow. 2005. Microarray-based detection of Salmonella enterica serovar Typhimurium transposon mutants that cannot survive in macrophages and mice. Infect. Immun. 73: 5438-5449 https://doi.org/10.1128/IAI.73.9.5438-5449.2005
- Cheng, Q., B. J. Paszkiet, N. B. Shoemaker, J. F. Gardner, and A. A. Salyers. 2000. Integration and excision of a Bacteroides conjugative transposon, CTnDOT. J. Bacteriol. 182: 4035-4043 https://doi.org/10.1128/JB.182.14.4035-4043.2000
- Choi, K.-H., D. DeShazer, and H. P. Schweizer. 2006. mini-Tn7 insertion in bacteria with multiple glmS-linked attTn7 sites: Example Burkholderia mallei ATCC 23344. Nat. Protocols 1: 162-169 https://doi.org/10.1038/nprot.2006.25
- Choi, K.-H., J. B. Gaynor, K. G. White, C. Lopez, C. M. Bosio, R. R. Karkhoff-Schweizer, and H. P. Schweizer. 2005. A Tn7-based broad-range bacterial cloning and expression system. Nat. Methods 2: 443-448 https://doi.org/10.1038/nmeth765
- Choi, K.-H., T. Mima, Y. C. Quintero, D. Rholl, A. Kumar, I. R. Beacham, and H. P. Schweizer. 2008. Genetic tools for select agent compliant manipulation of Burkholderia pseudomallei. Appl. Environ. Microbiol. 74: 1064-1075 https://doi.org/10.1128/AEM.02430-07
- Choi, K.-H. and H. P. Schweizer. 2006. mini-Tn7 insertion in bacteria with secondary, non-glmS-linked attTn7 sites: Example Proteus mirabilis HI4320. Nat. Protocols 1: 170-178 https://doi.org/10.1038/nprot.2006.26
- Choi, Y. J., D. Bourque, L. Morel, D. Groleau, and C. B. Miguez. 2006. Multicopy integration and expression of heterologous genes in Methylobacterium extorquens ATCC 55366. Appl. Environ. Microbiol. 72: 753-759 https://doi.org/10.1128/AEM.72.1.753-759.2006
- Colegio, O. R., T. J. T. Griffin, N. D. Grindley, and J. E. Galan. 2001. In vitro transposition system for efficient generation of random mutants of Campylobacter jejuni. J. Bacteriol. 183: 2384-2388 https://doi.org/10.1128/JB.183.7.2384-2388.2001
- Craig, N. L. 1989. Transposon Tn7, pp. 211-225. In D. E. Berg and M. M. Howe (eds.) Mobile DNA. American Society for Microbiology, Washington, DC
- Craig, N. L. 1996. Transposon Tn7. Curr. Top. Microbiol. Immunol. 204: 27-48
- Craig, N. L. 1997. Target site selection in transposition. Annu. Rev. Biochem. 66: 437-474 https://doi.org/10.1146/annurev.biochem.66.1.437
- Cvitkovitch, D. G., J. A. Gutierrez, J. Behari, P. J. Youngman, J. E. Wetz, P. J. Crowley, J. D. Hillman, L. J. Brady, and A. S. Bleiweis. 2000. Tn917-lac mutagenesis of Streptococcus mutans to identify environmentally regulated genes. FEMS Microbiol. Lett. 182: 149-154 https://doi.org/10.1111/j.1574-6968.2000.tb08889.x
- de Lorenzo, V., M. Herrero, U. Jakubzik, and K. N. Timmis. 1990. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J. Bacteriol. 172: 6568-6572 https://doi.org/10.1128/jb.172.11.6568-6572.1990
- Espinosa-Urgel, M. and J. L. Ramos. 2001. Expression of a Pseudomonas putida aminotransferase involved in lysine catabolism is induced in the rhizosphere. Appl. Environ. Microbiol. 67: 5219-5224 https://doi.org/10.1128/AEM.67.11.5219-5224.2001
- Fleischmann, R. D., M. D. Adams, O. White, R. A. Clayton, E. F. Kirkness, A. R. Kerlavage, et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496-512 https://doi.org/10.1126/science.7542800
- Geoffroy, M. C., S. Floquet, A. Metais, X. Nassif, and V. Pelicic. 2003. Large-scale analysis of the meningococcus genome by gene disruption: Resistance to complementmediated lysis. Genome Res. 13: 391-398 https://doi.org/10.1101/gr.664303
- Gerdes, S. Y., M. D. Scholle, J. W. Campbell, G. Balazsi, E. Ravasz, M. D. Daugherty, et al. 2003. Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J. Bacteriol. 185: 5673-5684 https://doi.org/10.1128/JB.185.19.5673-5684.2003
- Glass, J. I., N. Assad-Garcia, N. Alperovich, S. Yooseph, M. R. Lewis, M. Maruf, C. A. Hutchison 3rd, H. O. Smith, and J. C. Venter. 2006. Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci. U.S.A. 103: 425-430 https://doi.org/10.1073/pnas.0510013103
- Godoy, P., M. I. Ramos-Gonzalez, and J. L. Ramos. 2001. Involvement of the TonB system in tolerance to solvents and drugs in Pseudomonas putida DOT-T1E. J. Bacteriol. 183:5285-5292 https://doi.org/10.1128/JB.183.18.5285-5292.2001
- Golden, N. J., A. Camilli, and D. W. Acheson. 2000. Random transposon mutagenesis of Campylobacter jejuni. Infect. Immun. 68: 5450-5453 https://doi.org/10.1128/IAI.68.9.5450-5453.2000
- Grant, A. J., C. Coward, M. A. Jones, C. A. Woodall, P. A. Barrow, and D. J. Maskell. 2005. Signature-tagged transposon mutagenesis studies demonstrate the dynamic nature of cecal colonization of 2-week-old chickens by Campylobacter jejuni. Appl. Environ. Microbiol. 71: 8031-8041 https://doi.org/10.1128/AEM.71.12.8031-8041.2005
- Griffin, T. J. 4th, L. Parsons, A. E. Leschziner, J. DeVost, K. M. Derbyshire, and N. D. Grindley. 1999. In vitro transposition of Tn552: A tool for DNA sequencing and mutagenesis. Nucleic Acids Res. 27: 3859-3865 https://doi.org/10.1093/nar/27.19.3859
- Gueguen, E., P. Rousseau, G. Duval-Valentin, and M. Chandler. 2005. The transpososome: Control of transposition at the level of catalysis. Trends Microbiol. 13: 543-549 https://doi.org/10.1016/j.tim.2005.09.002
- Guo, B. P. and J. J. Mekalanos. 2001. Helicobacter pylori mutagenesis by mariner in vitro transposition. FEMS Immunol. Med. Microbiol. 30: 87-93 https://doi.org/10.1111/j.1574-695X.2001.tb01554.x
- Gwinn, M. L., A. E. Stellwagen, N. L. Craig, J. F. Tomb, and H. O. Smith. 1997. In vitro Tn7 mutagenesis of Haemophilus influenzae Rd and characterization of the role of atpA in transformation. J. Bacteriol. 179: 7315-7320 https://doi.org/10.1128/jb.179.23.7315-7320.1997
- Haapa, S., S. Suomalainen, S. Eerikainen, M. Airaksinen, L. Paulin, and H. Savilahti. 1999. An efficient DNA sequencing strategy based on the bacteriophage Mu in vitro DNA transposition reaction. Genome Res. 9: 308-315
- Haapa, S., S. Taira, E. Heikkinen, and H. Savilahti. 1999. An efficient and accurate integration of mini-Mu transposons in vitro: A general methodology for functional genetic analysis and molecular biology applications. Nucleic Acids Res. 27:2777-2784 https://doi.org/10.1093/nar/27.13.2777
- Halling, S. M. and N. Kleckner. 1982. A symmetrical six-basepair target site sequence determines Tn10 insertion specificity. Cell 28: 155-163 https://doi.org/10.1016/0092-8674(82)90385-3
- Hare, R. S., S. S. Walker, T. E. Dorman, J. R. Greene, L. M. Guzman, T. J. Kenney, et al. 2001. Genetic footprinting in bacteria. J. Bacteriol. 183: 1694-1706 https://doi.org/10.1128/JB.183.5.1694-1706.2001
- Hayashi, T., K. Makino, M. Ohnishi, K. Kurokawa, K. Ishii, K. Yokoyama, et al. 2001. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8: 11-22 https://doi.org/10.1093/dnares/8.1.11
- Hayes, F. 2003. Transposon-based strategies for microbial functional genomics and proteomics. Annu. Rev. Genet. 37: 3-29 https://doi.org/10.1146/annurev.genet.37.110801.142807
- Hayes, F., C. Cayanan, D. Barilla, and A. N. Monteiro. 2000. Functional assay for BRCA1: Mutagenesis of the COOHterminal region reveals critical residues for transcription activation. Cancer Res. 60: 2411-2418
- Hayes, F. and B. Hallet. 2000. Pentapeptide scanning mutagenesis:Encouraging old proteins to execute unusual tricks. Trends Microbiol. 8: 571-577 https://doi.org/10.1016/S0966-842X(00)01857-6
- Hendrixson, D. R. and V. J. DiRita. 2004. Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 52: 471-484 https://doi.org/10.1111/j.1365-2958.2004.03988.x
- Hensel, M., J. E. Shea, C. Gleeson, M. D. Jones, E. Dalton, and D. W. Holden. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269: 400-403 https://doi.org/10.1126/science.7618105
- Heungens, K., C. E. Cowles, and H. Goodrich-Blair. 2002. Identification of Xenorhabdus nematophila genes required for mutualistic colonization of Steinernema carpocapsae nematodes. Mol. Microbiol. 45: 1337-1353 https://doi.org/10.1046/j.1365-2958.2002.03100.x
- Hochhut, B. and M. K. Waldor. 1999. Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol. Microbiol. 32: 99-110 https://doi.org/10.1046/j.1365-2958.1999.01330.x
- Hoffmaster, A. R. and T. M. Koehler. 1999. Control of virulence gene expression in Bacillus anthracis. J. Appl. Microbiol. 87:279-281 https://doi.org/10.1046/j.1365-2672.1999.00887.x
- Jones, A. L., K. M. Knoll, and C. E. Rubens. 2000. Identification of Streptococcus agalactiae virulence genes in the neonatal rat sepsis model using signature-tagged mutagenesis. Mol. Microbiol. 37: 1444-1455 https://doi.org/10.1046/j.1365-2958.2000.02099.x
- Kersulyte, D., B. Velapatino, G. Dailide, A. K. Mukhopadhyay, Y. Ito, L. Cahuayme, A. J. Parkinson, R. H. Gilman, and D. E. Berg. 2002. Transposable element ISHp608 of Helicobacter pylori: Nonrandom geographic distribution, functional organization, and insertion specificity. J. Bacteriol. 184: 992-1002 https://doi.org/10.1128/jb.184.4.992-1002.2002
- Klee, S. R., X. Nassif, B. Kusecek, P. Merker, J. L. Beretti, M. Achtman, and C. R. Tinsley. 2000. Molecular and biological analysis of eight genetic islands that distinguish Neisseria meningitidis from the closely related pathogen Neisseria gonorrhoeae. Infect. Immun. 68: 2082-2095 https://doi.org/10.1128/IAI.68.4.2082-2095.2000
- Koch, B., L. E. Jensen, and O. Nybroe. 2001. A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J. Microbiol. Methods 45: 187-195 https://doi.org/10.1016/S0167-7012(01)00246-9
- Kuduvalli, P. N., R. Mitra, and N. L. Craig. 2005. Site-specific Tn7 transposition into the human genome. Nucleic Acids Res. 33: 857-863 https://doi.org/10.1093/nar/gki227
- Kumar, A., M. Seringhaus, M. C. Biery, R. J. Sarnovsky, L. Umansky, S. Piccirillo, et al. 2004. Large-scale mutagenesis of the yeast genome using a Tn7-derived multipurpose transposon. Genome Res. 14: 1975-1986 https://doi.org/10.1101/gr.2875304
- Laasik, E., M. Ojarand, M. Pajunen, H. Savilahti, and A. Mae. 2005. Novel mutants of Erwinia carotovora subsp. carotovora defective in the production of plant cell wall degrading enzymes generated by Mu transpososome-mediated insertion mutagenesis. FEMS Microbiol. Lett. 243: 93-99 https://doi.org/10.1016/j.femsle.2004.11.045
- Lamberg, A., S. Nieminen, M. Qiao, and H. Savilahti. 2002. Efficient insertion mutagenesis strategy for bacterial genomes involving electroporation of in vitro-assembled DNA transposition complexes of bacteriophage Mu. Appl. Environ. Microbiol. 68:705-712 https://doi.org/10.1128/AEM.68.2.705-712.2002
- Lambert, A., M. Osteras, K. Mandon, M. C. Poggi, and D. Le Rudulier. 2001. Fructose uptake in Sinorhizobium meliloti is mediated by a high-affinity ATP-binding cassette transport system. J. Bacteriol. 183: 4709-4717 https://doi.org/10.1128/JB.183.16.4709-4717.2001
- Lambertsen, L., C. Sternberg, and S. Molin. 2004. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ. Microbiol. 6: 726-732 https://doi.org/10.1111/j.1462-2920.2004.00605.x
- Lavoie, B. D. and G. Chaconas. 1994. A second high affinity HU binding site in the phage Mu transpososome. J. Biol. Chem. 269: 15571-15576
- Le Breton, Y., N. P. Mohapatra, and W. G. Haldenwang. 2006. In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon. Appl. Environ. Microbiol. 72: 327-333 https://doi.org/10.1128/AEM.72.1.327-333.2006
- Lemos, M. L. and J. H. Crosa. 1992. Highly preferred site of insertion of Tn7 into the chromosome of Vibrio anguillarum. Plasmid 27: 161-163 https://doi.org/10.1016/0147-619X(92)90016-4
- Lewenza, S., R. K. Falsafi, G. Winsor, W. J. Gooderham, J. B. McPhee, F. S. Brinkman, and R. E. Hancock. 2005. Construction of a mini-Tn5-luxCDABE mutant library in Pseudomonas aeruginosa PAO1: A tool for identifying differentially regulated genes. Genome Res. 15: 583-589 https://doi.org/10.1101/gr.3513905
- Liberati, N. T., J. M. Urbach, S. Miyata, D. G. Lee, E. Drenkard, G. Wu, J. Villanueva, T. Wei, and F. M. Ausubel. 2006. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl. Acad. Sci. U.S.A. 103: 2833-2838 https://doi.org/10.1073/pnas.0511100103
- Lichtenstein, C. and S. Brenner. 1982. Unique insertion site of Tn7 in the E. coli chromosome. Nature 297: 601-603 https://doi.org/10.1038/297601a0
- Lo, C., K. Adachi, J. R. Shuster, J. E. Hamer, and L. Hamer. 2003. The bacterial transposon Tn7 causes premature polyadenylation of mRNA in eukaryotic organisms: TAGKO mutagenesis in filamentous fungi. Nucleic Acids Res. 31: 4822-4827 https://doi.org/10.1093/nar/gkg676
- Mandin, P., H. Fsihi, O. Dussurget, M. Vergassola, E. Milohanic, A. Toledo-Arana, I. Lasa, J. Johansson, and P. Cossart. 2005. VirR, a response regulator critical for Listeria monocytogenes virulence. Mol. Microbiol. 57: 1367-1380 https://doi.org/10.1111/j.1365-2958.2005.04776.x
- Manoil, C. 2000. Tagging exported proteins using Escherichia coli alkaline phosphatase gene fusions. Methods Enzymol. 326:35-47 https://doi.org/10.1016/S0076-6879(00)26045-X
- McCann, J., E. V. Stabb, D. S. Millikan, and E. G. Ruby. 2003. Population dynamics of Vibrio fischeri during infection of Euprymna scolopes. Appl. Environ. Microbiol. 69: 5928-5934 https://doi.org/10.1128/AEM.69.10.5928-5934.2003
- McClain, M. S. and N. C. Engleberg. 1996. Construction of an alkaline phosphatase fusion-generating transposon, mTn10phoA. Gene 170: 147-148 https://doi.org/10.1016/0378-1119(95)00856-X
- Mizuuchi, K. 1992. Transpositional recombination: Mechanistic insights from studies of Mu and other elements. Annu. Rev. Biochem. 61: 1011-1051 https://doi.org/10.1146/annurev.bi.61.070192.005051
- Mizuuchi, M., T. A. Baker, and K. Mizuuchi. 1995. Assembly of phage Mu transpososomes: Cooperative transitions assisted by protein and DNA scaffolds. Cell 83: 375-385 https://doi.org/10.1016/0092-8674(95)90115-9
- Morgan, G. J., G. F. Hatfull, S. Casjens, and R. W. Hendrix. 2002. Bacteriophage Mu genome sequence: Analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J. Mol. Biol. 317: 337-359 https://doi.org/10.1006/jmbi.2002.5437
- Oppon, J. C., R. J. Sarnovsky, N. L. Craig, and D. E. Rawlings. 1998. A Tn7-like transposon is present in the glmUS region of the obligately chemoautolithotrophic bacterium Thiobacillus ferrooxidans. J. Bacteriol. 180: 3007-3012
- Paik, S., L. Senty, S. Das, J. C. Noe, C. L. Munro, and T. Kitten. 2005. Identification of virulence determinants for endocarditis in Streptococcus sanguinis by signature-tagged mutagenesis. Infect. Immun. 73: 6064-6074 https://doi.org/10.1128/IAI.73.9.6064-6074.2005
- Park, J. S., S. J. Lee, H. G. Rhie, and H. S. Lee. 2008. Characterization of a chromosomal nickel resistance determinant from Klebsiella oxytoca CCUG 15788. J. Microbiol. Biotechnol. 18: 1040-1043
- Parkhill, J., M. Achtman, K. D. James, S. D. Bentley, C. Churcher, S. R. Klee, et al. 2000. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404: 502-506 https://doi.org/10.1038/35006655
- Peters, J. E. and N. L. Craig. 2000. Tn7 transposes proximal to DNA double-strand breaks and into regions where chromosomal DNA replication terminates. Mol. Cell 6: 573-582 https://doi.org/10.1016/S1097-2765(00)00056-3
- Petit, M. A., C. Bruand, L. Janniere, and S. D. Ehrlich. 1990. Tn10-derived transposons active in Bacillus subtilis. J. Bacteriol. 172: 6736-6740 https://doi.org/10.1128/jb.172.12.6736-6740.1990
- Reznikoff, W. S. 2008. Transposon Tn5. Annu. Rev. Genet. 42:269-286 https://doi.org/10.1146/annurev.genet.42.110807.091656
- Rholl, D. A., L. A. Trunck, and H. P. Schweizer. 2008. Himar1 in vivo transposon mutagenesis of Burkholderia pseudomallei. Appl. Environ. Microbiol. 74: 7529-7535 https://doi.org/10.1128/AEM.01973-08
- Robert, V., F. Hayes, A. Lazdunski, and G. P. Michel. 2002. Identification of XcpZ domains required for assembly of the secretion of Pseudomonas aeruginosa. J. Bacteriol. 184:1779-1782 https://doi.org/10.1128/JB.184.6.1779-1782.2002
- Robertson, H. M. and D. J. Lampe. 1995. Distribution of transposable elements in arthropods. Annu. Rev. Entomol. 40:333-357 https://doi.org/10.1146/annurev.en.40.010195.002001
- Rowland, S. J. and K. G. Dyke. 1990. Tn552, a novel transposable element from Staphylococcus aureus. Mol. Microbiol. 4: 961-975 https://doi.org/10.1111/j.1365-2958.1990.tb00669.x
- Rubin, E. J., B. J. Akerley, V. N. Novik, D. J. Lampe, R. N. Husson, and J. J. Mekalanos. 1999. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc. Natl. Acad. Sci. U.S.A. 96: 1645-1650 https://doi.org/10.1073/pnas.96.4.1645
- Saenz, H. L. and C. Dehio. 2005. Signature-tagged mutagenesis:Technical advances in a negative selection method for virulence gene identification. Curr. Opin. Microbiol. 8: 612-619 https://doi.org/10.1016/j.mib.2005.08.013
- Sanchis, V., H. Agaisse, J. Chaufaux, and D. Lereclus. 1997. A recombinase-mediated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains. Appl. Environ. Microbiol. 63: 779-784
- Sassetti, C. M., D. H. Boyd, and E. J. Rubin. 2001. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. U.S.A. 98: 12712-12717 https://doi.org/10.1073/pnas.231275498
- Sassetti, C. M., D. H. Boyd, and E. J. Rubin. 2003.. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48: 77-84 https://doi.org/10.1046/j.1365-2958.2003.03425.x
- Schagen, F. H., H. J. Rademaker, S. J. Cramer, H. van Ormondt, A. J. van der Eb, P. van de Putte, and R. C. Hoeben. 2000. Towards integrating vectors for gene therapy: Expression of functional bacteriophage MuA and MuB proteins in mammalian cells. Nucleic Acids Res. 28: E104 https://doi.org/10.1093/nar/28.23.e104
- Schwan, W. R., S. N. Coulter, E. Y. Ng, M. H. Langhorne, H. D. Ritchie, L. L. Brody, et al. 1998. Identification and characterization of the PutP proline permease that contributes to in vivo survival of Staphylococcus aureus in animal models. Infect. Immun. 66: 567-572
- Scott, J. R. and G. G. Churchward. 1995. Conjugative transposition. Annu. Rev. Microbiol. 49: 367-397 https://doi.org/10.1146/annurev.mi.49.100195.002055
- Shan, Z., H. Xu, X. Shi, Y. Yu, H. Yao, X. Zhang, et al. 2004. Identification of two new genes involved in twitching motility in Pseudomonas aeruginosa. Microbiology 150: 2653-2661 https://doi.org/10.1099/mic.0.27131-0
- Shapiro, J. A. 1979. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc. Natl. Acad. Sci. U.S.A. 76: 1933-1937 https://doi.org/10.1073/pnas.76.4.1933
- Shen, H., S. E. Gold, S. J. Tamaki, and N. T. Keen. 1992. Construction of a Tn7-lux system for gene expression studies in Gram-negative bacteria. Gene 122: 27-34 https://doi.org/10.1016/0378-1119(92)90028-N
- Shevchenko, Y., G. G. Bouffard, Y. S. Butterfield, R. W. Blakesley, J. L. Hartley, A. C. Young, et al. 2002. Systematic sequencing of cDNA clones using the transposon Tn5. Nucleic Acids Res. 30: 2469-2477 https://doi.org/10.1093/nar/30.11.2469
- Shin, D. W., S. M. Lee, Y. R. Shin, and S. R. Ryu. 2006. Identification of a novel genetic locus affecting ptsG expression in Escherichia coli. J. Microbiol. Biotechnol. 16: 795-798
- Smith, V., D. Botstein, and P. O. Brown. 1995. Genetic footprinting: A genomic strategy for determining a gene's function given its sequence. Proc. Natl. Acad. Sci. U.S.A. 92:6479-6483 https://doi.org/10.1073/pnas.92.14.6479
- Smith, V., K. N. Chou, D. Lashkari, D. Botstein, and P. O. Brown. 1996. Functional analysis of the genes of yeast chromosome V by genetic footprinting. Science 274: 2069-2074 https://doi.org/10.1126/science.274.5295.2069
- Stellwagen, A. E. and N. L. Craig. 2001. Analysis of gain-offunction mutants of an ATP-dependent regulator of Tn7 transposition. J. Mol. Biol. 305: 633-642 https://doi.org/10.1006/jmbi.2000.4317
- Stentz, R., M. Gasson, and C. Shearman. 2006. The Tra domain of the lactococcal CluA surface protein is a unique domain that contributes to sex factor DNA transfer. J. Bacteriol. 188: 2106-2114 https://doi.org/10.1128/JB.188.6.2106-2114.2006
- Stewart, B. J. and L. L. McCarter. 2003. Lateral flagellar gene system of Vibrio parahaemolyticus. J. Bacteriol. 185: 4508-4518 https://doi.org/10.1128/JB.185.15.4508-4518.2003
- Strathmann, M., B. A. Hamilton, C. A. Mayeda, M. I. Simon, E. M. Meyerowitz, and M. J. Palazzolo. 1991. Transposonfacilitated DNA sequencing. Proc. Natl. Acad. Sci. U.S.A. 88:1247-1250 https://doi.org/10.1073/pnas.88.4.1247
- Summer, E. J., C. F. Gonzalez, T. Carlisle, L. M. Mebane, A. M. Cass, C. G. Savva, J. LiPuma, and R. Young. 2004. Burkholderia cenocepacia phage BcepMu and a family of Mulike phages encoding potential pathogenesis factors. J. Mol. Biol. 340: 49-65 https://doi.org/10.1016/j.jmb.2004.04.053
- Swartley, J. S., C. F. McAllister, R. A. Hajjeh, D. W. Heinrich, and D. S. Stephens. 1993. Deletions of Tn916-like transposons are implicated in tetM-mediated resistance in pathogenic Neisseria. Mol. Microbiol. 10: 299-310 https://doi.org/10.1111/j.1365-2958.1993.tb01956.x
- Sydenham, M., G. Douce, F. Bowe, S. Ahmed, S. Chatfield, and G. Dougan. 2000. Salmonella enterica serovar Typhimurium surA mutants are attenuated and effective live oral vaccines. Infect. Immun. 68: 1109-1115 https://doi.org/10.1128/IAI.68.3.1109-1115.2000
- Taira, S., J. Tuimala, E. Roine, E. L. Nurmiaho-Lassila, H. Savilahti, and M. Romantschuk. 1999. Mutational analysis of the Pseudomonas syringae pv. tomato hrpA gene encoding Hrp pilus subunit. Mol. Microbiol. 34: 737-744 https://doi.org/10.1046/j.1365-2958.1999.01635.x
- Ton-Hoang, B., C. Guynet, D. R. Ronning, B. Cointin-Marty, F. Dyda, and M. Chandler. 2005. Transposition of ISHp608, member of an unusual family of bacterial insertion sequences. EMBO J. 24: 3325-3338 https://doi.org/10.1038/sj.emboj.7600787
- Tribble, G. D., A. C. Parker, and C. J. Smith. 1997. The Bacteroides mobilizable transposon Tn4555 integrates by a site-specific recombination mechanism similar to that of the Gram-positive bacterial element Tn916. J. Bacteriol. 179:2731-2739
- Tribble, G. D., A. C. Parker, and C. J. Smith. 1999. Transposition genes of the Bacteroides mobilizable transposon Tn4555: Role of a novel targeting gene. Mol. Microbiol. 34:385-394 https://doi.org/10.1046/j.1365-2958.1999.01616.x
- Vilen, H., S. Eerikainen, J. Tornberg, M. S. Airaksinen, and H. Savilahti. 2001. Construction of gene-targeting vectors: A rapid Mu in vitro DNA transposition-based strategy generating null, potentially hypomorphic, and conditional alleles. Transgenic Res. 10: 69-80 https://doi.org/10.1023/A:1008959231644
- Wall, J. D., T. Murnan, J. Argyle, R. S. English, and B. J. Rapp-Giles. 1996. Transposon mutagenesis in Desulfovibrio desulfuricans: Development of a random mutagenesis tool from Tn7. Appl. Environ. Microbiol. 62: 3762-3767
- Wang, Y. and P. C. Lau. 1996. Sequence and expression of an isocitrate dehydrogenase-encoding gene from a polycyclic aromatic hydrocarbon oxidizer, Sphingomonas yanoikuyae B1. Gene 168: 15-21 https://doi.org/10.1016/0378-1119(95)00732-6
- Weber, E. and R. Koebnik. 2005. Domain structure of HrpE, the Hrp pilus subunit of Xanthomonas campestris pv. vesicatoria. J. Bacteriol. 187: 6175-6186 https://doi.org/10.1128/JB.187.17.6175-6186.2005
- White, O., J. A. Eisen, J. F. Heidelberg, E. K. Hickey, J. D. Peterson, R. J. Dodson, et al. 1999. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286: 1571-1577 https://doi.org/10.1126/science.286.5444.1571
- Winson, M. K., S. Swift, P. J. Hill, C. M. Sims, G. Griesmayr, B. W. Bycroft, P. Williams, and G. S. Stewart. 1998. Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol. Lett. 163: 193-202 https://doi.org/10.1111/j.1574-6968.1998.tb13045.x
- Winterberg, K. M., J. Luecke, A. S. Bruegl, and W. S. Reznikoff. 2005. Phenotypic screening of Escherichia coli K-12 Tn5 insertion libraries, using whole-genome oligonucleotide microarrays. Appl. Environ. Microbiol. 71: 451-459 https://doi.org/10.1128/AEM.71.1.451-459.2005
- Wolkow, C. A., R. T. DeBoy, and N. L. Craig. 1996. Conjugating plasmids are preferred targets for Tn7. Genes Dev. 10: 2145-2157 https://doi.org/10.1101/gad.10.17.2145
- Wong, S. M. and J. J. Mekalanos. 2000. Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 97: 10191-10196 https://doi.org/10.1073/pnas.97.18.10191
- Wright, A. C., J. L. Powell, J. B. Kaper, and J. G. Morris Jr. 2001. Identification of a group 1-like capsular polysaccharide operon for Vibrio vulnificus. Infect. Immun. 69: 6893-6901 https://doi.org/10.1128/IAI.69.11.6893-6901.2001
- Youngman, P. J., J. B. Perkins, and R. Losick. 1983. Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917. Proc. Natl. Acad. Sci. U.S.A. 80: 2305-2309 https://doi.org/10.1073/pnas.80.8.2305
- Youngman, P. J., J. B. Perkins, and K. Sandman. 1985. Use of Tn917-mediated transcriptional gene fusions to lacZ and cat-86 for the identification and study of spo genes in Bacillus subtilis, pp. 47-54. In J. A. Hoch and P. Setlow (eds.), Molecular Biology of Microbial Differentiation. ASM Press, Washington, D.C.
- Yu, B. J. and C. Kim. 2008. Minimization of the Escherichia coli genome using the Tn5-targeted Cre/loxP excision system. Methods Mol. Biol. 416: 261-277 https://doi.org/10.1007/978-1-59745-321-9_17
Cited by
- ModuleOrganizer: detecting modules in families of transposable elements vol.11, pp.None, 2009, https://doi.org/10.1186/1471-2105-11-474
- Molecular aspects of gene transfer and foreign DNA acquisition in prokaryotes with regard to safety issues vol.86, pp.4, 2010, https://doi.org/10.1007/s00253-010-2489-3
- ANVAYA: A WORKFLOWS ENVIRONMENT FOR AUTOMATED GENOME ANALYSIS vol.10, pp.4, 2009, https://doi.org/10.1142/s0219720012500060
- Harnessing the power of transposon mutagenesis for antibacterial target identification and evaluation vol.2, pp.4, 2009, https://doi.org/10.4161/mge.21647
- The private life of environmental bacteria: pollutant biodegradation at the single cell level vol.16, pp.3, 2009, https://doi.org/10.1111/1462-2920.12360
- Generation of comprehensive transposon insertion mutant library for the model archaeon, Haloferax volcanii , and its use for gene discovery vol.12, pp.None, 2009, https://doi.org/10.1186/s12915-014-0103-3
- Construction and Analysis of a Modified Transposable Element Carrying an Outward Directed Inducible Promoter for Bacillus subtilis vol.68, pp.5, 2009, https://doi.org/10.1007/s00284-013-0503-6
- A mariner transposon vector adapted for mutagenesis in oral streptococci vol.3, pp.3, 2014, https://doi.org/10.1002/mbo3.171
- Genetically modified microorganism Spingomonas paucimobilis UT26 for simultaneously degradation of methyl-parathion and γ-hexachlorocyclohexane vol.23, pp.5, 2009, https://doi.org/10.1007/s10646-014-1224-8
- Spatial and Temporal Features of the Growth of a Bacterial Species Colonizing the Zebrafish Gut vol.5, pp.6, 2009, https://doi.org/10.1128/mbio.01751-14
- Multicopy integration of mini-Tn7 transposons into selected chromosomal sites of a Salmonella vaccine strain vol.8, pp.1, 2009, https://doi.org/10.1111/1751-7915.12187
- Rapid construction of a whole-genome transposon insertion collection for Shewanella oneidensis by Knockout Sudoku vol.7, pp.1, 2016, https://doi.org/10.1038/ncomms13270
- A novel suicide shuttle plasmid for Streptococcus suis serotype 2 and Streptococcus equi ssp. zooepidemicus gene mutation vol.6, pp.None, 2009, https://doi.org/10.1038/srep27133
- Effect of Genome Position on Heterologous Gene Expression in Bacillus subtilis: An Unbiased Analysis vol.5, pp.9, 2009, https://doi.org/10.1021/acssynbio.6b00065
- DNA Transposition at Work vol.116, pp.20, 2009, https://doi.org/10.1021/acs.chemrev.6b00003
- Isolating Escherichia coli strains for recombinant protein production vol.74, pp.5, 2009, https://doi.org/10.1007/s00018-016-2371-2
- Pseudomonas putida rDNA is a favored site for the expression of biosynthetic genes vol.9, pp.None, 2009, https://doi.org/10.1038/s41598-019-43405-1
- GFP tagging of Brucella melitensis Rev1 allows the identification of vaccinated sheep vol.66, pp.1, 2009, https://doi.org/10.1111/tbed.13053
- A Mini-ISY100 Transposon Delivery System Effective in γ Proteobacteria vol.10, pp.None, 2009, https://doi.org/10.3389/fmicb.2019.00280
- Targeting 16S rDNA for Stable Recombinant Gene Expression in Pseudomonas vol.8, pp.8, 2009, https://doi.org/10.1021/acssynbio.9b00195
- Development of a metabolic pathway transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii vol.12, pp.None, 2009, https://doi.org/10.1186/s13068-019-1448-1
- High-Titer De Novo Biosynthesis of the Predominant Human Milk Oligosaccharide 2′-Fucosyllactose from Sucrose in Escherichia coli vol.9, pp.10, 2009, https://doi.org/10.1021/acssynbio.0c00304
- A native, highly active Tc1/mariner transposon from zebrafish ( ZB ) offers an efficient genetic manipulation tool for vertebrates vol.49, pp.4, 2009, https://doi.org/10.1093/nar/gkab045
- Bacteria-Based Live Vehicle for In Vivo Bioluminescence Imaging vol.93, pp.47, 2009, https://doi.org/10.1021/acs.analchem.1c03568