Browse > Article
http://dx.doi.org/10.4014/jmb.0811.669

Applications of Transposon-Based Gene Delivery System in Bacteria  

Choi, Kyoung-Hee (Department of Oral Microbiology, College of Dentistry, Wonkwang University)
Kim, Kang-Ju (Department of Oral Microbiology, College of Dentistry, Wonkwang University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.3, 2009 , pp. 217-228 More about this Journal
Abstract
Mobile genetic segments, or transposons, are also referred to as jumping genes as they can shift from one position in the genome to another, thus inducing a chromosomal mutation. According to the target site-specificity of the transposon during a transposition event, the result is either the insertion of a gene of interest at a specific chromosomal site, or the creation of knockout mutants. The former situation includes the integration of conjugative transposons via site-specific recombination, several transposons preferring a target site of a conserved AT-rich sequence, and Tn7 being site-specifically inserted at attTn7, the downstream of the essential glmS gene. The latter situation is exploited for random mutagenesis in many prokaryotes, including IS (insertion sequence) elements, mariner, Mu, Tn3 derivatives (Tn4430 and Tn917), Tn5, modified Tn7, Tn10, Tn552, and Ty1, enabling a variety of genetic manipulations. Randomly inserted transposons have been previously employed for a variety of applications such as genetic footprinting, gene transcriptional and translational fusion, signature-tagged mutagenesis (STM), DNA or cDNA sequencing, transposon site hybridization (TraSH), and scanning linker mutagenesis (SLM). Therefore, transposon-mediated genetic engineering is a valuable discipline for the study of bacterial physiology and pathogenesis in living hosts.
Keywords
Transposon; gene integration;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Akerley, B. J., E. J. Rubin, V. L. Novick, K. Amaya, N. Judson, and J. J. Mekalanos. 2002. A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl. Acad. Sci. U.S.A. 99:966-971   DOI   ScienceOn
2 Bourhy, P., H. Louvel, I. Saint Girons, and M. Picardeau. 2005. Random insertional mutagenesis of Leptospira interrogans, the agent of leptospirosis, using a mariner transposon. J. Bacteriol. 187: 3255-3258   DOI   ScienceOn
3 Braunstein, M., T. I. Griffin, J. I. Kriakov, S. T. Friedman, N. D. Grindley, and W. R. Jacobs Jr. 2000. Identification of genes encoding exported Mycobacterium tuberculosis proteins using a Tn552'phoA in vitro transposition system. J. Bacteriol. 182:2732-2740   DOI   ScienceOn
4 Cheng, Q., B. J. Paszkiet, N. B. Shoemaker, J. F. Gardner, and A. A. Salyers. 2000. Integration and excision of a Bacteroides conjugative transposon, CTnDOT. J. Bacteriol. 182: 4035-4043   DOI   ScienceOn
5 Choi, K.-H., T. Mima, Y. C. Quintero, D. Rholl, A. Kumar, I. R. Beacham, and H. P. Schweizer. 2008. Genetic tools for select agent compliant manipulation of Burkholderia pseudomallei. Appl. Environ. Microbiol. 74: 1064-1075   DOI   ScienceOn
6 Colegio, O. R., T. J. T. Griffin, N. D. Grindley, and J. E. Galan. 2001. In vitro transposition system for efficient generation of random mutants of Campylobacter jejuni. J. Bacteriol. 183: 2384-2388   DOI   ScienceOn
7 Craig, N. L. 1996. Transposon Tn7. Curr. Top. Microbiol. Immunol. 204: 27-48   PUBMED
8 Golden, N. J., A. Camilli, and D. W. Acheson. 2000. Random transposon mutagenesis of Campylobacter jejuni. Infect. Immun. 68: 5450-5453   DOI   ScienceOn
9 Grant, A. J., C. Coward, M. A. Jones, C. A. Woodall, P. A. Barrow, and D. J. Maskell. 2005. Signature-tagged transposon mutagenesis studies demonstrate the dynamic nature of cecal colonization of 2-week-old chickens by Campylobacter jejuni. Appl. Environ. Microbiol. 71: 8031-8041   DOI   ScienceOn
10 Griffin, T. J. 4th, L. Parsons, A. E. Leschziner, J. DeVost, K. M. Derbyshire, and N. D. Grindley. 1999. In vitro transposition of Tn552: A tool for DNA sequencing and mutagenesis. Nucleic Acids Res. 27: 3859-3865   DOI
11 Hayes, F. 2003. Transposon-based strategies for microbial functional genomics and proteomics. Annu. Rev. Genet. 37: 3-29   DOI   PUBMED   ScienceOn
12 Lambert, A., M. Osteras, K. Mandon, M. C. Poggi, and D. Le Rudulier. 2001. Fructose uptake in Sinorhizobium meliloti is mediated by a high-affinity ATP-binding cassette transport system. J. Bacteriol. 183: 4709-4717   DOI   ScienceOn
13 Lambertsen, L., C. Sternberg, and S. Molin. 2004. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ. Microbiol. 6: 726-732   DOI   ScienceOn
14 Le Breton, Y., N. P. Mohapatra, and W. G. Haldenwang. 2006. In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon. Appl. Environ. Microbiol. 72: 327-333   DOI   ScienceOn
15 Lemos, M. L. and J. H. Crosa. 1992. Highly preferred site of insertion of Tn7 into the chromosome of Vibrio anguillarum. Plasmid 27: 161-163   DOI   ScienceOn
16 McClain, M. S. and N. C. Engleberg. 1996. Construction of an alkaline phosphatase fusion-generating transposon, mTn10phoA. Gene 170: 147-148   DOI   ScienceOn
17 Lewenza, S., R. K. Falsafi, G. Winsor, W. J. Gooderham, J. B. McPhee, F. S. Brinkman, and R. E. Hancock. 2005. Construction of a mini-Tn5-luxCDABE mutant library in Pseudomonas aeruginosa PAO1: A tool for identifying differentially regulated genes. Genome Res. 15: 583-589   DOI   ScienceOn
18 Lo, C., K. Adachi, J. R. Shuster, J. E. Hamer, and L. Hamer. 2003. The bacterial transposon Tn7 causes premature polyadenylation of mRNA in eukaryotic organisms: TAGKO mutagenesis in filamentous fungi. Nucleic Acids Res. 31: 4822-4827   DOI   ScienceOn
19 McCann, J., E. V. Stabb, D. S. Millikan, and E. G. Ruby. 2003. Population dynamics of Vibrio fischeri during infection of Euprymna scolopes. Appl. Environ. Microbiol. 69: 5928-5934   DOI   ScienceOn
20 Mizuuchi, M., T. A. Baker, and K. Mizuuchi. 1995. Assembly of phage Mu transpososomes: Cooperative transitions assisted by protein and DNA scaffolds. Cell 83: 375-385   DOI   ScienceOn
21 Morgan, G. J., G. F. Hatfull, S. Casjens, and R. W. Hendrix. 2002. Bacteriophage Mu genome sequence: Analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J. Mol. Biol. 317: 337-359   DOI   ScienceOn
22 Park, J. S., S. J. Lee, H. G. Rhie, and H. S. Lee. 2008. Characterization of a chromosomal nickel resistance determinant from Klebsiella oxytoca CCUG 15788. J. Microbiol. Biotechnol. 18: 1040-1043   과학기술학회마을   PUBMED   ScienceOn
23 Robertson, H. M. and D. J. Lampe. 1995. Distribution of transposable elements in arthropods. Annu. Rev. Entomol. 40:333-357   DOI   ScienceOn
24 Shevchenko, Y., G. G. Bouffard, Y. S. Butterfield, R. W. Blakesley, J. L. Hartley, A. C. Young, et al. 2002. Systematic sequencing of cDNA clones using the transposon Tn5. Nucleic Acids Res. 30: 2469-2477   DOI   ScienceOn
25 Rowland, S. J. and K. G. Dyke. 1990. Tn552, a novel transposable element from Staphylococcus aureus. Mol. Microbiol. 4: 961-975   DOI   ScienceOn
26 Rubin, E. J., B. J. Akerley, V. N. Novik, D. J. Lampe, R. N. Husson, and J. J. Mekalanos. 1999. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc. Natl. Acad. Sci. U.S.A. 96: 1645-1650   DOI   ScienceOn
27 Sassetti, C. M., D. H. Boyd, and E. J. Rubin. 2003.. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48: 77-84   DOI   ScienceOn
28 Smith, V., K. N. Chou, D. Lashkari, D. Botstein, and P. O. Brown. 1996. Functional analysis of the genes of yeast chromosome V by genetic footprinting. Science 274: 2069-2074   DOI   PUBMED   ScienceOn
29 Stentz, R., M. Gasson, and C. Shearman. 2006. The Tra domain of the lactococcal CluA surface protein is a unique domain that contributes to sex factor DNA transfer. J. Bacteriol. 188: 2106-2114   DOI   ScienceOn
30 Swartley, J. S., C. F. McAllister, R. A. Hajjeh, D. W. Heinrich, and D. S. Stephens. 1993. Deletions of Tn916-like transposons are implicated in tetM-mediated resistance in pathogenic Neisseria. Mol. Microbiol. 10: 299-310   DOI   ScienceOn
31 White, O., J. A. Eisen, J. F. Heidelberg, E. K. Hickey, J. D. Peterson, R. J. Dodson, et al. 1999. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286: 1571-1577   DOI   PUBMED
32 Taira, S., J. Tuimala, E. Roine, E. L. Nurmiaho-Lassila, H. Savilahti, and M. Romantschuk. 1999. Mutational analysis of the Pseudomonas syringae pv. tomato hrpA gene encoding Hrp pilus subunit. Mol. Microbiol. 34: 737-744   DOI   ScienceOn
33 Tribble, G. D., A. C. Parker, and C. J. Smith. 1997. The Bacteroides mobilizable transposon Tn4555 integrates by a site-specific recombination mechanism similar to that of the Gram-positive bacterial element Tn916. J. Bacteriol. 179:2731-2739   PUBMED   ScienceOn
34 Tribble, G. D., A. C. Parker, and C. J. Smith. 1999. Transposition genes of the Bacteroides mobilizable transposon Tn4555: Role of a novel targeting gene. Mol. Microbiol. 34:385-394   DOI   ScienceOn
35 Wong, S. M. and J. J. Mekalanos. 2000. Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 97: 10191-10196   DOI   ScienceOn
36 Guo, B. P. and J. J. Mekalanos. 2001. Helicobacter pylori mutagenesis by mariner in vitro transposition. FEMS Immunol. Med. Microbiol. 30: 87-93   DOI   ScienceOn
37 Oppon, J. C., R. J. Sarnovsky, N. L. Craig, and D. E. Rawlings. 1998. A Tn7-like transposon is present in the glmUS region of the obligately chemoautolithotrophic bacterium Thiobacillus ferrooxidans. J. Bacteriol. 180: 3007-3012   PUBMED   ScienceOn
38 Koch, B., L. E. Jensen, and O. Nybroe. 2001. A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J. Microbiol. Methods 45: 187-195   DOI   ScienceOn
39 Winterberg, K. M., J. Luecke, A. S. Bruegl, and W. S. Reznikoff. 2005. Phenotypic screening of Escherichia coli K-12 Tn5 insertion libraries, using whole-genome oligonucleotide microarrays. Appl. Environ. Microbiol. 71: 451-459   DOI   ScienceOn
40 Liberati, N. T., J. M. Urbach, S. Miyata, D. G. Lee, E. Drenkard, G. Wu, J. Villanueva, T. Wei, and F. M. Ausubel. 2006. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl. Acad. Sci. U.S.A. 103: 2833-2838   DOI   ScienceOn
41 Wright, A. C., J. L. Powell, J. B. Kaper, and J. G. Morris Jr. 2001. Identification of a group 1-like capsular polysaccharide operon for Vibrio vulnificus. Infect. Immun. 69: 6893-6901   DOI   ScienceOn
42 Stewart, B. J. and L. L. McCarter. 2003. Lateral flagellar gene system of Vibrio parahaemolyticus. J. Bacteriol. 185: 4508-4518   DOI   ScienceOn
43 Yu, B. J. and C. Kim. 2008. Minimization of the Escherichia coli genome using the Tn5-targeted Cre/loxP excision system. Methods Mol. Biol. 416: 261-277   DOI   PUBMED   ScienceOn
44 Choi, K.-H., J. B. Gaynor, K. G. White, C. Lopez, C. M. Bosio, R. R. Karkhoff-Schweizer, and H. P. Schweizer. 2005. A Tn7-based broad-range bacterial cloning and expression system. Nat. Methods 2: 443-448   DOI   ScienceOn
45 Fleischmann, R. D., M. D. Adams, O. White, R. A. Clayton, E. F. Kirkness, A. R. Kerlavage, et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496-512   DOI   PUBMED   ScienceOn
46 Robert, V., F. Hayes, A. Lazdunski, and G. P. Michel. 2002. Identification of XcpZ domains required for assembly of the secretion of Pseudomonas aeruginosa. J. Bacteriol. 184:1779-1782   DOI   ScienceOn
47 Bubeck, A., M. Wagner, Z. Ruzsics, M. Lotzerich, M. Iglesias, I. R. Singh, and U. H. Koszinowski. 2004. Comprehensive mutational analysis of a herpesvirus gene in the viral genome context reveals a region essential for virus replication. J. Virol. 78: 8026-8035   DOI   ScienceOn
48 Espinosa-Urgel, M. and J. L. Ramos. 2001. Expression of a Pseudomonas putida aminotransferase involved in lysine catabolism is induced in the rhizosphere. Appl. Environ. Microbiol. 67: 5219-5224   DOI   ScienceOn
49 Gerdes, S. Y., M. D. Scholle, J. W. Campbell, G. Balazsi, E. Ravasz, M. D. Daugherty, et al. 2003. Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J. Bacteriol. 185: 5673-5684   DOI   ScienceOn
50 Haapa, S., S. Suomalainen, S. Eerikainen, M. Airaksinen, L. Paulin, and H. Savilahti. 1999. An efficient DNA sequencing strategy based on the bacteriophage Mu in vitro DNA transposition reaction. Genome Res. 9: 308-315   PUBMED
51 de Lorenzo, V., M. Herrero, U. Jakubzik, and K. N. Timmis. 1990. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J. Bacteriol. 172: 6568-6572   DOI   PUBMED
52 Hochhut, B. and M. K. Waldor. 1999. Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol. Microbiol. 32: 99-110   DOI   ScienceOn
53 Wang, Y. and P. C. Lau. 1996. Sequence and expression of an isocitrate dehydrogenase-encoding gene from a polycyclic aromatic hydrocarbon oxidizer, Sphingomonas yanoikuyae B1. Gene 168: 15-21   DOI   ScienceOn
54 Chan, K., C. C. Kim, and S. Falkow. 2005. Microarray-based detection of Salmonella enterica serovar Typhimurium transposon mutants that cannot survive in macrophages and mice. Infect. Immun. 73: 5438-5449   DOI   ScienceOn
55 Craig, N. L. 1989. Transposon Tn7, pp. 211-225. In D. E. Berg and M. M. Howe (eds.) Mobile DNA. American Society for Microbiology, Washington, DC
56 Hoffmaster, A. R. and T. M. Koehler. 1999. Control of virulence gene expression in Bacillus anthracis. J. Appl. Microbiol. 87:279-281   DOI   ScienceOn
57 Weber, E. and R. Koebnik. 2005. Domain structure of HrpE, the Hrp pilus subunit of Xanthomonas campestris pv. vesicatoria. J. Bacteriol. 187: 6175-6186   DOI   ScienceOn
58 Sydenham, M., G. Douce, F. Bowe, S. Ahmed, S. Chatfield, and G. Dougan. 2000. Salmonella enterica serovar Typhimurium surA mutants are attenuated and effective live oral vaccines. Infect. Immun. 68: 1109-1115   DOI   ScienceOn
59 Youngman, P. J., J. B. Perkins, and R. Losick. 1983. Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917. Proc. Natl. Acad. Sci. U.S.A. 80: 2305-2309   DOI   ScienceOn
60 Hare, R. S., S. S. Walker, T. E. Dorman, J. R. Greene, L. M. Guzman, T. J. Kenney, et al. 2001. Genetic footprinting in bacteria. J. Bacteriol. 183: 1694-1706   DOI   ScienceOn
61 Winson, M. K., S. Swift, P. J. Hill, C. M. Sims, G. Griesmayr, B. W. Bycroft, P. Williams, and G. S. Stewart. 1998. Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol. Lett. 163: 193-202   DOI   ScienceOn
62 Gwinn, M. L., A. E. Stellwagen, N. L. Craig, J. F. Tomb, and H. O. Smith. 1997. In vitro Tn7 mutagenesis of Haemophilus influenzae Rd and characterization of the role of atpA in transformation. J. Bacteriol. 179: 7315-7320   DOI   PUBMED   ScienceOn
63 Gueguen, E., P. Rousseau, G. Duval-Valentin, and M. Chandler. 2005. The transpososome: Control of transposition at the level of catalysis. Trends Microbiol. 13: 543-549   DOI   ScienceOn
64 Kumar, A., M. Seringhaus, M. C. Biery, R. J. Sarnovsky, L. Umansky, S. Piccirillo, et al. 2004. Large-scale mutagenesis of the yeast genome using a Tn7-derived multipurpose transposon. Genome Res. 14: 1975-1986   DOI   ScienceOn
65 Laasik, E., M. Ojarand, M. Pajunen, H. Savilahti, and A. Mae. 2005. Novel mutants of Erwinia carotovora subsp. carotovora defective in the production of plant cell wall degrading enzymes generated by Mu transpososome-mediated insertion mutagenesis. FEMS Microbiol. Lett. 243: 93-99   DOI   ScienceOn
66 Paik, S., L. Senty, S. Das, J. C. Noe, C. L. Munro, and T. Kitten. 2005. Identification of virulence determinants for endocarditis in Streptococcus sanguinis by signature-tagged mutagenesis. Infect. Immun. 73: 6064-6074   DOI   ScienceOn
67 Reznikoff, W. S. 2008. Transposon Tn5. Annu. Rev. Genet. 42:269-286   DOI   PUBMED   ScienceOn
68 Sassetti, C. M., D. H. Boyd, and E. J. Rubin. 2001. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. U.S.A. 98: 12712-12717   DOI   ScienceOn
69 Bainton, R. J., K. M. Kubo, J. N. Feng, and N. L. Craig. 1993. Tn7 transposition: Target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell 72: 931-943   DOI   ScienceOn
70 Kuduvalli, P. N., R. Mitra, and N. L. Craig. 2005. Site-specific Tn7 transposition into the human genome. Nucleic Acids Res. 33: 857-863   DOI   ScienceOn
71 Manoil, C. 2000. Tagging exported proteins using Escherichia coli alkaline phosphatase gene fusions. Methods Enzymol. 326:35-47   DOI   PUBMED
72 Glass, J. I., N. Assad-Garcia, N. Alperovich, S. Yooseph, M. R. Lewis, M. Maruf, C. A. Hutchison 3rd, H. O. Smith, and J. C. Venter. 2006. Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci. U.S.A. 103: 425-430   DOI   ScienceOn
73 Saenz, H. L. and C. Dehio. 2005. Signature-tagged mutagenesis:Technical advances in a negative selection method for virulence gene identification. Curr. Opin. Microbiol. 8: 612-619   DOI   ScienceOn
74 Stellwagen, A. E. and N. L. Craig. 2001. Analysis of gain-offunction mutants of an ATP-dependent regulator of Tn7 transposition. J. Mol. Biol. 305: 633-642   DOI   ScienceOn
75 Rholl, D. A., L. A. Trunck, and H. P. Schweizer. 2008. Himar1 in vivo transposon mutagenesis of Burkholderia pseudomallei. Appl. Environ. Microbiol. 74: 7529-7535   DOI   ScienceOn
76 Schwan, W. R., S. N. Coulter, E. Y. Ng, M. H. Langhorne, H. D. Ritchie, L. L. Brody, et al. 1998. Identification and characterization of the PutP proline permease that contributes to in vivo survival of Staphylococcus aureus in animal models. Infect. Immun. 66: 567-572   PUBMED   ScienceOn
77 Godoy, P., M. I. Ramos-Gonzalez, and J. L. Ramos. 2001. Involvement of the TonB system in tolerance to solvents and drugs in Pseudomonas putida DOT-T1E. J. Bacteriol. 183:5285-5292   DOI   ScienceOn
78 Hendrixson, D. R. and V. J. DiRita. 2004. Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 52: 471-484   DOI   ScienceOn
79 Jones, A. L., K. M. Knoll, and C. E. Rubens. 2000. Identification of Streptococcus agalactiae virulence genes in the neonatal rat sepsis model using signature-tagged mutagenesis. Mol. Microbiol. 37: 1444-1455   DOI   ScienceOn
80 Butterfield, Y. S., M. A. Marra, J. K. Asano, S. Y. Chan, R. Guin, M. I. Krzywinski, et al. 2002. An efficient strategy for large-scale high-throughput transposon-mediated sequencing of cDNA clones. Nucleic Acids Res. 30: 2460-2468   DOI   ScienceOn
81 Mizuuchi, K. 1992. Transpositional recombination: Mechanistic insights from studies of Mu and other elements. Annu. Rev. Biochem. 61: 1011-1051   DOI   PUBMED   ScienceOn
82 Akerley, B. J., E. J. Rubin, A. Camilli, D. J. Lampe, H. M. Robertson, and J. J. Mekalanos. 1998. Systematic identification of essential genes by in vitro mariner mutagenesis. Proc. Natl. Acad. Sci. U.S.A. 95: 8927-8932   DOI   ScienceOn
83 Choi, Y. J., D. Bourque, L. Morel, D. Groleau, and C. B. Miguez. 2006. Multicopy integration and expression of heterologous genes in Methylobacterium extorquens ATCC 55366. Appl. Environ. Microbiol. 72: 753-759   DOI   ScienceOn
84 Youngman, P. J., J. B. Perkins, and K. Sandman. 1985. Use of Tn917-mediated transcriptional gene fusions to lacZ and cat-86 for the identification and study of spo genes in Bacillus subtilis, pp. 47-54. In J. A. Hoch and P. Setlow (eds.), Molecular Biology of Microbial Differentiation. ASM Press, Washington, D.C.
85 Craig, N. L. 1997. Target site selection in transposition. Annu. Rev. Biochem. 66: 437-474   DOI   PUBMED   ScienceOn
86 Haapa, S., S. Taira, E. Heikkinen, and H. Savilahti. 1999. An efficient and accurate integration of mini-Mu transposons in vitro: A general methodology for functional genetic analysis and molecular biology applications. Nucleic Acids Res. 27:2777-2784   DOI   ScienceOn
87 Hayes, F., C. Cayanan, D. Barilla, and A. N. Monteiro. 2000. Functional assay for BRCA1: Mutagenesis of the COOHterminal region reveals critical residues for transcription activation. Cancer Res. 60: 2411-2418   PUBMED   ScienceOn
88 Klee, S. R., X. Nassif, B. Kusecek, P. Merker, J. L. Beretti, M. Achtman, and C. R. Tinsley. 2000. Molecular and biological analysis of eight genetic islands that distinguish Neisseria meningitidis from the closely related pathogen Neisseria gonorrhoeae. Infect. Immun. 68: 2082-2095   DOI   ScienceOn
89 Caiazza, N. C. and G. A. O'Toole. 2004. SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14. J. Bacteriol. 186: 4476-4485   DOI   ScienceOn
90 Lichtenstein, C. and S. Brenner. 1982. Unique insertion site of Tn7 in the E. coli chromosome. Nature 297: 601-603   DOI   ScienceOn
91 Biery, M. C., M. Lopata, and N. L. Craig. 2000. A minimal system for Tn7 transposition: The transposon-encoded proteins TnsA and TnsB can execute DNA breakage and joining reactions that generate circularized Tn7 species. J. Mol. Biol. 297: 25-37   DOI   ScienceOn
92 Heungens, K., C. E. Cowles, and H. Goodrich-Blair. 2002. Identification of Xenorhabdus nematophila genes required for mutualistic colonization of Steinernema carpocapsae nematodes. Mol. Microbiol. 45: 1337-1353   DOI   ScienceOn
93 Shapiro, J. A. 1979. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc. Natl. Acad. Sci. U.S.A. 76: 1933-1937   DOI   ScienceOn
94 Ton-Hoang, B., C. Guynet, D. R. Ronning, B. Cointin-Marty, F. Dyda, and M. Chandler. 2005. Transposition of ISHp608, member of an unusual family of bacterial insertion sequences. EMBO J. 24: 3325-3338   DOI   ScienceOn
95 Wolkow, C. A., R. T. DeBoy, and N. L. Craig. 1996. Conjugating plasmids are preferred targets for Tn7. Genes Dev. 10: 2145-2157   DOI   ScienceOn
96 Cvitkovitch, D. G., J. A. Gutierrez, J. Behari, P. J. Youngman, J. E. Wetz, P. J. Crowley, J. D. Hillman, L. J. Brady, and A. S. Bleiweis. 2000. Tn917-lac mutagenesis of Streptococcus mutans to identify environmentally regulated genes. FEMS Microbiol. Lett. 182: 149-154   DOI   ScienceOn
97 Geoffroy, M. C., S. Floquet, A. Metais, X. Nassif, and V. Pelicic. 2003. Large-scale analysis of the meningococcus genome by gene disruption: Resistance to complementmediated lysis. Genome Res. 13: 391-398   DOI   ScienceOn
98 Shin, D. W., S. M. Lee, Y. R. Shin, and S. R. Ryu. 2006. Identification of a novel genetic locus affecting ptsG expression in Escherichia coli. J. Microbiol. Biotechnol. 16: 795-798   과학기술학회마을   ScienceOn
99 Choi, K.-H., D. DeShazer, and H. P. Schweizer. 2006. mini-Tn7 insertion in bacteria with multiple glmS-linked attTn7 sites: Example Burkholderia mallei ATCC 23344. Nat. Protocols 1: 162-169   DOI   ScienceOn
100 Hayashi, T., K. Makino, M. Ohnishi, K. Kurokawa, K. Ishii, K. Yokoyama, et al. 2001. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8: 11-22   DOI   ScienceOn
101 Smith, V., D. Botstein, and P. O. Brown. 1995. Genetic footprinting: A genomic strategy for determining a gene's function given its sequence. Proc. Natl. Acad. Sci. U.S.A. 92:6479-6483   DOI   ScienceOn
102 Petit, M. A., C. Bruand, L. Janniere, and S. D. Ehrlich. 1990. Tn10-derived transposons active in Bacillus subtilis. J. Bacteriol. 172: 6736-6740   DOI   PUBMED
103 Scott, J. R. and G. G. Churchward. 1995. Conjugative transposition. Annu. Rev. Microbiol. 49: 367-397   DOI   ScienceOn
104 Shan, Z., H. Xu, X. Shi, Y. Yu, H. Yao, X. Zhang, et al. 2004. Identification of two new genes involved in twitching motility in Pseudomonas aeruginosa. Microbiology 150: 2653-2661   DOI   ScienceOn
105 Badarinarayana, V., P. W. Estep 3rd, J. Shendure, J. Edwards, S. Tavazoie, F. Lam, and G. M. Church. 2001. Selection analyses of insertional mutants using subgenic-resolution arrays. Nat. Biotechnol. 19: 1060-1065   DOI   ScienceOn
106 Hensel, M., J. E. Shea, C. Gleeson, M. D. Jones, E. Dalton, and D. W. Holden. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269: 400-403   DOI   PUBMED   ScienceOn
107 Albano, M. A., J. Arroyo, B. I. Eisenstein, and N. C. Engleberg. 1992. phoA gene fusions in Legionella pneumophila generated in vivo using a new transposon, MudphoA. Mol. Microbiol. 6: 1829-1839   DOI   ScienceOn
108 Shen, H., S. E. Gold, S. J. Tamaki, and N. T. Keen. 1992. Construction of a Tn7-lux system for gene expression studies in Gram-negative bacteria. Gene 122: 27-34   DOI   ScienceOn
109 Summer, E. J., C. F. Gonzalez, T. Carlisle, L. M. Mebane, A. M. Cass, C. G. Savva, J. LiPuma, and R. Young. 2004. Burkholderia cenocepacia phage BcepMu and a family of Mulike phages encoding potential pathogenesis factors. J. Mol. Biol. 340: 49-65   DOI   ScienceOn
110 Parkhill, J., M. Achtman, K. D. James, S. D. Bentley, C. Churcher, S. R. Klee, et al. 2000. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404: 502-506   DOI   PUBMED   ScienceOn
111 Strathmann, M., B. A. Hamilton, C. A. Mayeda, M. I. Simon, E. M. Meyerowitz, and M. J. Palazzolo. 1991. Transposonfacilitated DNA sequencing. Proc. Natl. Acad. Sci. U.S.A. 88:1247-1250   DOI   ScienceOn
112 Vilen, H., S. Eerikainen, J. Tornberg, M. S. Airaksinen, and H. Savilahti. 2001. Construction of gene-targeting vectors: A rapid Mu in vitro DNA transposition-based strategy generating null, potentially hypomorphic, and conditional alleles. Transgenic Res. 10: 69-80   DOI   ScienceOn
113 Mandin, P., H. Fsihi, O. Dussurget, M. Vergassola, E. Milohanic, A. Toledo-Arana, I. Lasa, J. Johansson, and P. Cossart. 2005. VirR, a response regulator critical for Listeria monocytogenes virulence. Mol. Microbiol. 57: 1367-1380   DOI   ScienceOn
114 Baitin, D. M., E. N. Zaitsev, and V. A. Lanzov. 2003. Hyperrecombinogenic RecA protein from Pseudomonas aeruginosa with enhanced activity of its primary DNA binding site. J. Mol. Biol. 328: 1-7   DOI   ScienceOn
115 Choi, K.-H. and H. P. Schweizer. 2006. mini-Tn7 insertion in bacteria with secondary, non-glmS-linked attTn7 sites: Example Proteus mirabilis HI4320. Nat. Protocols 1: 170-178   DOI   ScienceOn
116 Halling, S. M. and N. Kleckner. 1982. A symmetrical six-basepair target site sequence determines Tn10 insertion specificity. Cell 28: 155-163   DOI   ScienceOn
117 Lamberg, A., S. Nieminen, M. Qiao, and H. Savilahti. 2002. Efficient insertion mutagenesis strategy for bacterial genomes involving electroporation of in vitro-assembled DNA transposition complexes of bacteriophage Mu. Appl. Environ. Microbiol. 68:705-712   DOI   ScienceOn
118 Hayes, F. and B. Hallet. 2000. Pentapeptide scanning mutagenesis:Encouraging old proteins to execute unusual tricks. Trends Microbiol. 8: 571-577   DOI   ScienceOn
119 Lavoie, B. D. and G. Chaconas. 1994. A second high affinity HU binding site in the phage Mu transpososome. J. Biol. Chem. 269: 15571-15576   PUBMED
120 Peters, J. E. and N. L. Craig. 2000. Tn7 transposes proximal to DNA double-strand breaks and into regions where chromosomal DNA replication terminates. Mol. Cell 6: 573-582   DOI   ScienceOn
121 Wall, J. D., T. Murnan, J. Argyle, R. S. English, and B. J. Rapp-Giles. 1996. Transposon mutagenesis in Desulfovibrio desulfuricans: Development of a random mutagenesis tool from Tn7. Appl. Environ. Microbiol. 62: 3762-3767   PUBMED   ScienceOn
122 Schagen, F. H., H. J. Rademaker, S. J. Cramer, H. van Ormondt, A. J. van der Eb, P. van de Putte, and R. C. Hoeben. 2000. Towards integrating vectors for gene therapy: Expression of functional bacteriophage MuA and MuB proteins in mammalian cells. Nucleic Acids Res. 28: E104   DOI   PUBMED   ScienceOn
123 Kersulyte, D., B. Velapatino, G. Dailide, A. K. Mukhopadhyay, Y. Ito, L. Cahuayme, A. J. Parkinson, R. H. Gilman, and D. E. Berg. 2002. Transposable element ISHp608 of Helicobacter pylori: Nonrandom geographic distribution, functional organization, and insertion specificity. J. Bacteriol. 184: 992-1002   DOI   ScienceOn
124 Sanchis, V., H. Agaisse, J. Chaufaux, and D. Lereclus. 1997. A recombinase-mediated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains. Appl. Environ. Microbiol. 63: 779-784   PUBMED   ScienceOn