DOI QR코드

DOI QR Code

Insertional Transposon Mutagenesis of Xanthomonas oryzae pv. oryzae KXO85 by Electroporation

  • Lee, Byoung-Moo (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Park, Young-Jin (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Park, Dong-Suk (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Kang, Hee-Wan (Graduate School of Bio and Information Technology, Hankyoung National University) ;
  • Lee, Gil-Bok (National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Hahn, Jang-Ho (National Institute of Agricultural Biotechnology, Rural Development Administration)
  • Published : 2004.09.01

Abstract

The bacterial leaf blight, which is caused by Xantho-monas oryzae pv. oryzae, is the most damaging and intractable disease of rice. To identify the genes involved in the virulence mechanism of transposon TnS complex, which possesses a linearized transposon and transposase, was successfully introduced into X. oryzae pv. oryzae by electroporation. The transposon mutants were selected and confirm the presence of transposition in X. oryzae pv. oryzae by the PCR amplification of transposon fragments and the Southern hybridization using these mutants. Furthermore, transposon insertion sites in the mutant bacterial chromosome were deter-mined by direct genomic DNA sequencing using transposon-specific primers with ABI 3100 Genetic Analyzer. Efficiency of transposition was influenced mostly by the competence status of X. oryzae pv. oryzae cells and the conditions of electroporation. These results indicated that the insertion mutagenesis strategy could be applied to define function of uncharacterized genes in X. oryzae pv. oryzae.

Keywords

References

  1. Akerley, B. J., Rubin, E. J., Camilli, A., Lampe, D. J., Robertson, H. M. and Mekalanos, J. J. 1998. Systematic identification of essential genes by in vitro mariner mutagenesis. Proc. Natl. Acad. Sci. USA 95:8927-8932 https://doi.org/10.1073/pnas.95.15.8927
  2. DeFeyter, R., Kado, C. I. and Gabriel, D. W. 1990. Small, stable shuttle vectors for use in Xanthomonas. Gene 30; 88:65-72 https://doi.org/10.1016/0378-1119(90)90060-5
  3. Dennis, J. J. and Sokol, P. A. 1995. Electrotransformation of Pseudomonas. Methods Mol. BioI. 47: 125-133
  4. Devine, S. E. and Boeke, J. D. 1994. Efficient integration of artificial transposons into plasmid targets in vitro: a useful tool for DNA mapping, sequencing and genetic analysis. Nucleic Acids Res. 22:3765-3772 https://doi.org/10.1093/nar/22.18.3765
  5. Ditta, G., Stanfield, S., Corbin, D. and Helinski, D. R. 1980. Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci. USA 77:7347-7351 https://doi.org/10.1073/pnas.77.12.7347
  6. Goel, A. K., Rajagopal, L. and Sonti, R. V. 2001. Pigment and virulence deficiencies associated with mutations in the aroE gene of Xanthomonas oryzae pv. oryzae. Appl Environ Microbiol. 67:245-50 https://doi.org/10.1128/AEM.67.1.245-250.2001
  7. Goryshin, I. Y. and Reznikoff, W. S. 1998. Tn5 in vitro transposition. J. BioI. Chem. 273:7367-7374 https://doi.org/10.1074/jbc.273.13.7367
  8. Grewal, S. I., Johnstone, K. and Hutchison, M. L. 1993. Transformation of Pseudomonas tolassii by electroporation. Biomedical Letters 48: 177-183
  9. Gwinn, M. L., Stellwagen, A. E., Craig, N. L., Tomb, J. F. and Smith, H. O. 1997. In vitro Tn7 mutagenesis of Haemophilus injluenzae Rd and characterization of the role of atpA in transformation. J. Bacteriol. 179:7315-7320 https://doi.org/10.1128/jb.179.23.7315-7320.1997
  10. Haapa, S., Taira, S., Heikkinen, E. and Savilahti, H. 1999. An efficient and accurate integration of mini-Mu transposons in vitro: a general methodology for functional genetic analysis and molecular biology applications. Nucleic Acids Res. 27:2777-2784 https://doi.org/10.1093/nar/27.13.2777
  11. Hoffman, L. M., Jendrisak, J. J., Meis, R. J., Goryshin, I. Y. and Reznikoff, S. W. 2000. Transposome insertional mutagenesis and direct sequencing of microbial genomes. Genetica 108: 19-24 https://doi.org/10.1023/A:1004083307819
  12. Lurquin, P. F. 1997. Gene transfer by electroporation. Mol. Biotechnol. 7:5-35 https://doi.org/10.1007/BF02821542
  13. Misawa, T. and Miyazaki, E. 1972. Studies on the leaf blight of rice plant. (I) Alteration of content of carbohydrates, nitrogenous and phosphorus compounds in the diseased leaves. Ann. Phytopathol. Soc. Jpn. 38:375-380 https://doi.org/10.3186/jjphytopath.38.375
  14. Misawa, T. and Miyazaki, E. 1973. Quantitative analysis of some organic compounds in the cell of Xanthomonas oryzae and their relations to the inoculated rice leaf blade. Ann. Phytopathol. Soc. Jpn. 39:79-80 https://doi.org/10.3186/jjphytopath.39.79
  15. Reznikoff, W. S. 1993. The Tn5 transposon. Annu. Rev. Microbiol. 47:945-63 https://doi.org/10.1146/annurev.mi.47.100193.004501
  16. Rossier, O., Van den Ackerveken, G. and Bonas, U. 2000. HrpB2 and HrpF from Xanthomonas are type III-secreted proteins and essential for pathogenicity and recognition by the host plant. Mol Microbiol. 38:828-838 https://doi.org/10.1046/j.1365-2958.2000.02173.x
  17. Sambrook J., Frisch, E. F. and Maniatis, T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  18. Choi, S. H. and Leach, J. E. 1994. Genetic manipulation of Xanthomonas oryzae pv. oryzae. International Rice Research Notes (IRRN). 19:2
  19. Smith, A. W. and Iglewski, B. H. 1989. Transformation of Pseudomonas aeruginosa by electroporation. Nucleic Acids Res. 17:10509 https://doi.org/10.1093/nar/17.24.10509
  20. Snyder, L. and Champness, W. 1997. Molecular genetics of bacteria. American Society for Microbiology Press, Washington, D. C
  21. Swing, j., Van den Mooter, M., Vauterin, L., Hoste, B., Gillis, M., Mew, T. W. and Kersters, K. 1990. Reclassification of the casual agents of bacterial blight (Xanthomonas campestris pv. oryzae) and bacterial leaf streak (Xanthomonas campestris pv. orzicola) of rice as pathovars of Xanthomonas oryzae sp. Nov., nom.rev. Int. J. Syst. Bacteriol. 40:309-311 https://doi.org/10.1099/00207713-40-3-309
  22. Voelker, L. L. and Dybvig, K. 1998. Demonstration of extrachromosomal elements. Methods Mol. BioI. 104:239-246
  23. Wang, G. L., Song, W. Y., Ruan, D. L., Sideris, S. and Roland, P. C. 1996. The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae strains in transgenic plants. Mol. Plant-Microbe Interact. 9:850-855 https://doi.org/10.1094/MPMI-9-0850
  24. Wirth, R., Friesenegger, A. and Fiedler, S. 1989. Transformation of various species of gram-negative bacteria belonging to 11 different genera by electroporation. Mol. Gen. Genet. 216: 175-177 https://doi.org/10.1007/BF00332248

Cited by

  1. Genome-wide identification of pathogenicity genes inXanthomonas oryzaepv.oryzaeby transposon mutagenesis vol.57, pp.6, 2008, https://doi.org/10.1111/j.1365-3059.2008.01884.x
  2. A mutation in the aroE gene affects pigment production, virulence, and chemotaxis in Xanthomonas oryzae pv. oryzae vol.170, 2015, https://doi.org/10.1016/j.micres.2014.08.006
  3. Virulence Reduction and Differing Regulation of Virulence Genes in rpf Mutants of Xanthomonas oryzae pv. oryzae vol.24, pp.2, 2008, https://doi.org/10.5423/PPJ.2008.24.2.143