• 제목/요약/키워드: transport equation

검색결과 766건 처리시간 0.026초

Green's Function of Time-Energy Dependent Neutron Transport Equation

  • Hokee Minn;Pac, Pong-Youl
    • Nuclear Engineering and Technology
    • /
    • 제2권4호
    • /
    • pp.263-268
    • /
    • 1970
  • 시간과 에너지에 종속된 중성자 전도 방정식에 나타나는 연속 에너지 전도 연산자의 스펙트럼(Spectrum)을 분석했다. 스펙트럼에 관한 4가지 정리를 증명하고 일반화된 Mellin 에너지변화의 Convolution 정리를 얻었다. 또한 최종해에 필요한 완전성정리를 증명하고 점근적으로 가장 우세한 시간붕괴상수 1 - c를 발견하였다.

  • PDF

2항근사 볼츠만 방정식을 이용한 Ne의 전자수송재수 연구 (The study on the electron transport coefficients in Neon gas by 2-tenn approximation of the Boltzmann Equation)

  • 전병훈;하성철;송병두
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.236-238
    • /
    • 2003
  • The electron transport coefficients, the electron drift velocity W, the longitudinal diffusion coefficient $ND_L$ and $D_L/\mu$, in pure Ne were calculated over the wide E/N range from 0.01 to 800 Td at 1 Torr by two-term approximation of the Boltzmann equation for determination of electron collision cross sections set and for quantitative characteristic analysis of Ne molecular gas.

  • PDF

배기가스 조건에 따른 코로나 방전 현상 시뮬레이션 (Simulation Study of Corona Discharge According to Flue Gas Conditions)

  • 정재우;조무현
    • 한국대기환경학회지
    • /
    • 제17권2호
    • /
    • pp.223-231
    • /
    • 2001
  • In order to provide some insights into the influence of electric field, gas composition, and gas temperature on electron energy distribution and electron transport characteristics, the Boltzmann equation was solved by using cross section data for electron collisions, Critical electric fields for the corona development in dry air and flue gas are 150 and 80 Td, respectively. It was seen that the decrease of critical electric field in flue gas is mainly caused by the $H_2O$ addition through the comparison of ionization and attachment coefficients of gas components. Increase of $O_2$, $H_2O$, and $CO_2$ contents in gas affected discharge characteristics according to their reciprocal characteristics between lowering the ionization threshold and increasing the electro-negativity. As electric field increases, electrons with higher energies in the electron energy distribution also increase. The mean and characteristic electron energies also linearly increase with electric field. The variation of flue gas temperature did rarely affect on the electron energy distribution function and electron transport characteristics, because the gas temperature is several hundreds or thousands times lower than the electron temperature.

  • PDF

대와류모사 기법과 확률밀도함수를 이용한 스크램제트 연소부에서의 연소 현상 연구 (Large-Eddy Simulation based Eulerian PDF Approach for the Simulation of Scramjet Combustors)

  • 구희석
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.355-357
    • /
    • 2012
  • A probability density function (PDF) approach to account for turbulence-chemistry interaction in the context of large eddy simulation (LES) based simulation of scramjets is developed. To solve the high-dimensional joint-composition PDF transport equation robustly, the semi-discrete quadrature method of moments (SeQMOM) is recently proposed [1]. The SeQMOM approach addresses key numerical issues in LES related to the inaccuracies in computing filter-scale gradients, enabling an efficient and numerically consistent solution of the PDF transport equation. The computational tool is used to simulate a cavity-stabilized Mach 2.2 supersonic combustor.

  • PDF

$SiH_4$ 플라즈마중의 전자수송특성 해석 (The Analysis of Electron Transport Characteristics in $SiH_4$ Plasma)

  • 이형윤;하성철;김대연
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.925-928
    • /
    • 1998
  • In this paper, the electron transport characteristics in $SiH_4$ has been analysed over the E/N range $0.5{\sim}300[Td]$ and Pressure value 0.5, 1, 2.5 [Torr] by a two-term approximation Boltzmann equation method and by a Monte Carlo simulation. The motion has been calculated to give swarm parameters for the electron drift velocity. diffusion coefficient, electron ionization, mean energy and the electron energy distribution function. The electron energy distribution function has been analysed in $SiH_4$ at E/N=30, 50[Td] for a case of the equilibrium region in the mean electron energy and respective set of electron collision cross sections. The results of Boltzmann equation and Monte carlo simulation have been compared with experimental data by Pollock, Ohmori, cottrell and Walker.

  • PDF

An Analytical Calculation of the Transport of the Solute Dumped in a Homogeneous Open Sea with Mean and Oscillatory Flows

  • Lee Ho Jin;Jung Kyung Tae
    • Fisheries and Aquatic Sciences
    • /
    • 제7권2호
    • /
    • pp.90-95
    • /
    • 2004
  • An analytical model for predicting the convection-diffusion of solute dumped in a homogeneous open sea of constant water depth has been developed in a time-integral form. The model incorporates spatially uniform, uni-directional, mean and oscillatory currents for horizontal convection, the settling velocity for the vertical convection, and the anisotropic turbulent diffusion. Two transformations were introduced to reduce the convection-diffusion equation to the Fickian type diffusion equation, and then the Galerkin method was then applied via the expansion of eigenfunctions over the water column derived from the Sturm-Liouville problem. A series of calculations has been performed to demonstrate the applicability of the model.

유한요소 해석을 통한 수소확산에 미치는 영향 평가 (Assessment of Effective Factor of Hydrogen Diffusion Equation Using FE Analysis)

  • 김낙현;오창식;김윤재
    • 대한기계학회논문집A
    • /
    • 제34권6호
    • /
    • pp.709-715
    • /
    • 2010
  • 수소 확산과 탄-소성 거동이 결합된 모델은 이미 제시되어 있다. 본 논문에서는 수소확산에 미치는 인자들과 그 영향에 대해 연구하였다. 각 인자들의 영향을 비교하기 위해 저탄소강 재료의 균열이 있는 무한 평판 모델에 대해 수소확산과 기계적 하중이 연계된 유한요소 해석을 수행하였다. 유한요소 해석 결과는 Taha와 Sofrinis의 연구(2001) 결과와 비교하여 검증하였다.

Artificial neural network application to solute transport through unsaturated zone

  • Yoon, Hee-Sung;Lee, Kang-Kun
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.307-311
    • /
    • 2004
  • The unsaturated zone is a significant pathway of the surface contaminant movement and is a highly heterogeneous medium. Therefore, there are limitations in applying conventional convection-dispersion equation(CDE). Artificial neural network(ANN) is considered to be a versatile tool for approximating complex functions. For evaluating the applicability of ANN, numerical tests using ANN were conducted with training set generated by HYDRUS-2D which is based on CDE. The results represent that ANN can estimate the solute transport and the choice of network parameters and generation of training set patterns are important for efficient estimation.

  • PDF

볼륨비 이송방정식의 소스항을 이용한 자유수면 유동 해석의 해 확산 감소 (NUMERICAL DIFFUSION DECREASE OF FREE-SURFACE FLOW ANALYSIS USING SOURCE TERM IN VOLUME FRACTION TRANSPORT EQUATION)

  • 박선호;이신형
    • 한국전산유체공학회지
    • /
    • 제19권1호
    • /
    • pp.15-20
    • /
    • 2014
  • Accurate simulation of free-surface wave flows around a ship is very important for better hull-form design. In this paper, a computational fluid dynamics (CFD) code, termed SNUFOAM, which is based on the open source libraries, OpenFOAM, was developed to predict the wave patterns around a ship. Additional anti-diffusion source term for minimizing a numerical diffusion, which was caused by convection differencing scheme, was considered in the volume-fraction transport equation. The influence of the anti-diffusion source term was tested by applying it to free-surface wave flow around the Wigley model ship. In results, the band width of the volume fraction contours between 0.1 to 0.9 at the hull surface was narrowed by considering the anti-diffusion term.

원유 수송관 내부의 온도 변화 예측 을 위한 열전달 방정식의 모델링 (Modeling of Heat Transfer Equations for Estimation of Temperature Variations Inside the Oil Transport Pipe Line)

  • 진정준;정희택;배진수;이승옥
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.300-303
    • /
    • 2008
  • In the present study, the simple form of the heat transfer equation were suggested to estimate the temperature variation inside the oil pipe in order to determine the thickness of the insulating materials to retain the working oils below the critical temperature. The conservation of the thermal energy at arbitrary time were modeled to one dimensional unsteady equation with the empirical formula or data. The calculating results for non-insulation case showed that the temperature were very sensitive to the thermal convection by the velocity of the external wind. For insulation case, the insulation material which has higher density and specific heat, lower thermal conductivity should be chosen with more brighter coloring outside the pipe in order to retain the working oils below the critical temperature.

  • PDF