• Title/Summary/Keyword: transponder

Search Result 264, Processing Time 0.025 seconds

Phase Noise Evaluation of Multi-mode based-COMS Communication Transponder (다중모드 기반 천리안 위성통신 중계기의 위상잡음 특성 평가)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.20-25
    • /
    • 2012
  • The COMS, which is a multi-purposed satellite that provide the oceanic measurement data and meterological image data, is operating since 2010. Ka-band satellite communication transponder in COMS gets the MSM function that can provide the required multi-beam and transmits the multi-mode signal with high data rate. The phase noise of COMS communication transponder can be increased because of several local oscillators for MSM function and the utilization of Ka-band frequency. The phase noise affects the performance for the multi-mode and high rate data based- transmission method, it is not possible to recover the transmission data in system with the high system phase noise. In this paper, the phase noise of COMS was measured and the effects of the measured phase noise are analysed and evaluated in the viewpoint of the noise bandwidth of transmission system, Also the transmission performances for multi-mode and high rate data are evaluated in the presence of COMS phase noise.

A Variable Sample Rate Recursive Arithmetic Half Band Filter for SDR-based Digital Satellite Transponders (SDR기반 디지털 위성 트랜스폰더를 위한 가변 표본화율의 재귀 연산 구조)

  • Baek, Dae-Sung;Lim, Won-Gyu;Kim, Chong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1079-1085
    • /
    • 2013
  • Due to the limited power supply resources, it is essential that the minimization of algorithmic operation and the reduction of the hardware logical-resources in the design of the satellite transponder. It is also required that the transponder process the signals of various bandwidth efficiently, that is suitble for the SDR-based implementation. This paper proposes a variable rate down sampler which can provide variable bandwidth and data rate for carrier, ranging and sub-band command signals respectively. The proposed down sampler can provide multiple $2^M$ decimated outputs from a single half band filter with recursive arithmetic architecture, which can minimize the hardware resources as well as the arithmetic operations. The algorithm for hardware implementation as well as the analysis for the passband flatness and aliasing is presented and varified by the FPGA implementation.

Reliability Analysis of the Communications & Broadcasting Satellite Transponder and its Optimal Design (통신방송위성 중계기의 신뢰도 분석 및 최적 설계)

  • Kim, Young-Suk;Chang, Young-Keun;Jeong, Chul-Oh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.94-102
    • /
    • 2002
  • Since it would be almost impossible to recover and/or repair the satellite in space once it has been launched, a detailed analysis and design, manufacturing using the high quality workmanship, and qualification and acceptance tests in space-simulation environments are necessary for all satellite components prior to launch. Even though these efforts arc made, the failure can still occur. Therefore, redundancy should be considered in the satellite design for continuous operations in preparation for part or equipment failure. In this paper, the reliability analysis of the transponder, which is a payload of Communications & Broadcasting Satellite being developed by ETRI, was performed and compared for various design cases with different redundancies to find the optimal design. The optimal design has been finalized by investigating how the redundant components are composed from the viewpoint of technical performance measures, such as reliability, cost, schedule, and mass.

Research of Active Transponder application as Ground Control Point in Synthetic Aperture Radar Images (SAR 영상 내에서 능동 트랜스폰더의 GCP 활용 여부에 관한 연구)

  • Jeong, Ho-Ryung;Oh, Tae-Bong;Park, Duk-Jong;Lee, Sun-Gu;Lim, Hyo-Suk
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.164-170
    • /
    • 2012
  • This paper presents that the comparison results of AT (Active Transponder) positions obtained from different measurements: the result of GPS device and evaluated position from the SAR (Synthetic Aperture Radar) image, and active transponders can be useful as GCPs(Ground Control Points) in SAR images. The X-band AT are installed on the wide-and-flat area to improve SCR(signal-to-clutter ration), and activated to represent impulse response function in order to operate as one point target in SAR images. Cosmo-SkyMed operating at X-band frequency are used to provide SAR images of AT. The comparison of AT position is performed by using the result of GPS device field measurement and AT SAR images. ENVI-SARscape S/W is used to evaluate AT position in the SAR images. From the comparison, it is shown that AT are useful as GCPs for SAR images.

The Performance Improvement of the OFDM Based Satellite Communication System with the Consideration of Transponder Characteristics (위성 중계기 특성을 감안한 OFDM 기반 위성 통신 시스템의 성능 개선)

  • Lee, Hae-Seon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.10
    • /
    • pp.1196-1202
    • /
    • 2007
  • In this paper, the effects of performance improvement far the OFDM based satellite communications are analyzed with applying the CI(Carrier Interferometry)-OFDM and channel coding scheme considering the group delay and gain ripple characteristic as well as the nonlinear characteristic of the transponder. Comparing the BER between traditional OFDM and CI-OFDM, the degree of performance improvement is presented in AWGN channel environments for specified backoff condition of HPA. The simulations are performed with the 36 MHz bandwidth of transponder channel, 120 Mbps transmission rate, and 16 QAM modulation scheme between ideal and worst case condition. It is shown that the improvement measure by the CI-OFDM and channel coding for the group delay and nonlinear characteristic outperforms that for the gain ripple in terms of performance degradation presented by the individual characteristics. And the simulation results show that the effects of improvement by the CI-OFDM outperforms the effect by the applied channel coding, particularly in worst case condition.

Design and Implementation of the Combline Bandpass Filter for the Satellite Transponder using Least-squares Curve-fitting Method (Least-squares Curve-fitting 방법을 이용한 위성중계기용 Combline 대역통과여파기의 설계 및 제작)

  • 정근욱;이재현;박광량;김재명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1485-1492
    • /
    • 1994
  • In this paper, we design and implement the Combline Bandpass Filters for the satellite transponder by using the least-squares curve-fitting method. The Combline Bandpass Filters are located front of the mixer and behind of it, which is the component of down converter. Comparing with the filters which have $\lambda$/4 resonance length. Combline Filter has wide range of stop-band by using $\lambda$/8. So, it is useful to the satellite transponder owing to its low mass and small size. The filters described are realized as coupled rectangular coaxial transmission lines. The choice of this type is due to the ease of machining and wide variations in coupling coefficients rather than the use of the round rod resonators. We determine 800 MHz bandwidths for the combline bandpass filters. By using Chebyshev filter function, we design and implement 4-pole combline filters.

  • PDF

Study on Thermal Vacuum Test Result of DCAMP by the Analysis of Derating & Gain Control (디지털중계기의 부하경감 및 이득조정기능 분석을 통한 열진공시험결과 성능분석)

  • Jin, Byoung-Il;Ko, Hyun-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.72-78
    • /
    • 2015
  • Recently, the usage of the satellite is increased more and more in the areas that are communication, weather, marine, optical, radar etc. The functions of the Satellite are evolving from passive transponder to active transponder by the developing of a technology. Advanced countries in satellites install the DCAMP for increase of bandwidth efficiency, improvement of QoS by interference rejection. DCAMP includes many digital components in order to implement functions. Thus, these kinds of active transponders consume much more power compared to passive transponder and then increase the heat. In this paper, we discuss the TVAC test result of DCAMP in EQM(Engineering Qualification Model) level. The paper shows the test results of digital gain control in order to verify DCAMP status under the TVAC test. In addition, the temperature and heat condition of main components from viewpoint of derating will be treated through the official environment test for qualification.

Satellite Data Link Waveform and Transponder Structure for Anti-Jamming (항재밍을 위한 위성데이터링크 웨이브폼 및 중계기 구조)

  • Kim, Ki-Keun;Lee, Min-Woo;Lim, Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1728-1735
    • /
    • 2011
  • In this paper, satellite data link waveform is proposed which is based on the waveform of Link-16 but LDPC code is studied instead of CCSK code in order to be optimized to satellite nonlinear channel environment and transmission characteristics. And the DSM (Demux, Selective CH switch, and Mux) transponder structure is suggested which can remove all of the jamming signal out of the transmission signal band and convert uplink hopping frequency to desired ones of downlink. The results of BER and anti-jamming performance analysis shows that the required Eb/No and processing gain in the worst case partial band jammer of the proposed waveform are 2.5dB and 52dB respectively and the anti-jamming capacity improvement of DSM transponder is maximum 2dB.

A Study on Advanced Satellite Uplink Rain Attenuation Compensation using Digital Transponder of Next Military Satellite (차기 군위성체계의 디지털 위성중계기를 이용한 상향링크 강우감쇠에 대한 향상된 보상방안 연구)

  • Kim, Jung-Ho;Lee, Sue-Hyun;Kim, Bong-Su;Lee, Chang-Young;Song, Young-Joong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11B
    • /
    • pp.1696-1703
    • /
    • 2010
  • Increased demand for military satellite communications system and due to the depletion of resources of existing satellite communications frequencies, Ka-band and EHF-band satellite communication systems is growing demand for development. As a result, the study of rain attenuation mitigation for Ka/EHF-band frequencies has been achieved. The method to compensate rain attenuation on Ka-band(20/30) using the signal power measurement function in Digital Transponder of Next Military Satellite has been proposed in this paper. This method is more effective than generally used method by Beacon and UPC(uplink power control) in giving the precise rain attenuation measurement and correction.

A New Tuning Method of Dual-Mode Waveguide Filters for Satellite Transponder (위성 중계기용 이중모드 도파관 필터의 튜닝에 관한 연구)

  • 이주섭;엄만석;염인복;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.839-844
    • /
    • 2003
  • For mass and volume reduction, input demultiplxer and output multiplexer of satellite transponder widely adopt dual-mode waveguide filters fer channel filters. Generally, channel filters of the input demultiplexer are doubly terminated and channel filters of manifold output multiplexer should be singly terminated fur correct operation. This paper gives a tuning method using short-ended dummy cavity for dual-mode cavity filters. Tuning is based on the match of the computed and measured phase response of reflection coefficient. This proposed method is applied to 4-pole dual-mode doubly terminated elliptic response filter and 6-pole dual-mode singly terminated elliptic response filter for demonstration of this new tuning method. It is shown that this method shows good agreement between the experimental and computed results.