• 제목/요약/키워드: transparent oxide TFT

검색결과 71건 처리시간 0.033초

The improvement of electrical properties of InGaZnO (IGZO)4(IGZO) TFT by treating post-annealing process in different temperatures.

  • Kim, Soon-Jae;Lee, Hoo-Jeong;Yoo, Hee-Jun;Park, Gum-Hee;Kim, Tae-Wook;Roh, Yong-Han
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.169-169
    • /
    • 2010
  • As display industry requires various applications for future display technology, which can guarantees high level of flexibility and transparency on display panel, oxide semiconductor materials are regarded as one of the best candidates. $InGaZnO_4$(IGZO) has gathered much attention as a post-transition metal oxide used in active layer in thin-film transistor. Due to its high mobility fabricated at low temperature fabrication process, which is proper for application to display backplanes and use in flexible and/or transparent electronics. Electrical performance of amorphous oxide semiconductors depends on the resistance of the interface between source/drain metal contact and active layer. It is also affected by sheet resistance on IGZO thin film. Controlling contact/sheet resistance has been a hot issue for improving electrical properties of AOS(Amorphous oxide semiconductor). To overcome this problem, post-annealing has been introduced. In other words, through post-annealing process, saturation mobility, on/off ratio, drain current of the device all increase. In this research, we studied on the relation between device's resistance and post-annealing temperature. So far as many post-annealing effects have been reported, this research especially analyzed the change of electrical properties by increasing post-annealing temperature. We fabricated 6 main samples. After a-IGZO deposition, Samples were post-annealed in 5 different temperatures; as-deposited, $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$ and $500^{\circ}C$. Metal deposition was done on these samples by using Mo through E-beam evaporation. For analysis, three analysis methods were used; IV-characteristics by probe station, surface roughness by AFM, metal oxidation by FE-SEM. Experimental results say that contact resistance increased because of the metal oxidation on metal contact and rough surface of a-IGZO layer. we can suggest some of the possible solutions to overcome resistance effect for the improvement of TFT electrical performances.

  • PDF

InGaZnO active layer 두께에 따른 thin-film transistor 전기적인 영향

  • 우창호;김영이;안철현;김동찬;공보현;배영숙;서동규;조형균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.5-5
    • /
    • 2009
  • Thin-film-transistors (TFTs) that can be prepared at low temperatures have attracted much attention because of the great potential for transparent and flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited due to low field-effect mobility and rapid degradation after exposing to air. Alternative approach is the use of amorphous oxide semiconductors as a channel. Amorphous oxide semiconductors (AOSs) based TFTs showed the fast technological development, because AOS films can be fabricated at room temperature and exhibit the possibility in application like flexible display, electronic paper, and larges solar cells. Among the various AOSs, a-IGZO has lots of advantages because it has high channel mobility, uniform surface roughness and good transparency. [1] The high mobility is attributed to the overlap of spherical s-orbital of the heavy post-transition metal cations. This study demonstrated the effect of the variation in channel thickness from 30nm to 200nm on the TFT device performance. When the thickness was increased, turn-on voltage and subthreshold swing was decreased. The a-IGZO channels and source/drain metals were deposited with shadow mask. The a-IGZO channel layer was deposited on $SiO_2$/p-Si substrates by RF magnetron sputtering, where RF power is 150W. And working pressure is 3m Torr, at $O_2/Ar$ (2/28 sccm) atmosphere. The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. Finally, Al (150nm) as a gate metal was thermal-evaporated. TFT devices were heat-treated in a furnace at 250 $^{\circ}C$ and nitrogen atmosphere for 1hour. The electrical properties of the TFTs were measured using a probe-station. The TFT with channel thickness of 150nm exhibits a good subthreshold swing (SS) of 0.72 V/decade and on-off ratio of $1{\times}10^8$. The field effect mobility and threshold voltage were evaluated as 7.2 and 8 V, respectively.

  • PDF

RF 마그네트론 스퍼터링법으로 상온 증착된 비정질 ITZO 산화물의 전기적 및 광학적 특성 (Electrical and Optical Properties of Amorphous ITZO Deposited at Room Temperature by RF Magnetron Sputtering)

  • 이기창;조광민;이준형;김정주;허영우
    • 한국표면공학회지
    • /
    • 제47권5호
    • /
    • pp.239-243
    • /
    • 2014
  • The electrical and optical properties of amorphous In-Tin-Zinc-Oxide(ITZO) deposited at room temperature using rf-magnetron sputtering were investigated. The amorphous ITZO thin films were obtained at the composition of In:Sn:Zn = 6:2:2, 4:3:3, and 2:4:4, but the ITZO (8:1:1) showed a crystalline phase of bixbyite structure of In2O3. The resistivity of ITZO could be controlled by oxygen pressure in the sputtering ambient. The resistivity of post-annealed ITZO thin films exhibited the dependence on the amount of Indium. Optical energy band gap and transmittance increased as the amount of indium in ITZO increased. For the device application with ITZO, the bottom-gated thin-film transistor using ITZO as a active channel layer was fabricated. It showed a threshold voltage of 1.42V and an on/off ratio of $5.63{\times}10^7$ operated with saturation field-effect mobility of $14.2cm^2/V{\cdot}s$.

Effects of thickness of GIZO active layer on device performance in oxide thin-film-transistors

  • Woo, C.H.;Jang, G.J.;Kim, Y.H.;Kong, B.H.;Cho, H.K.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.137-137
    • /
    • 2009
  • Thin-film transistors (TFTs) that can be prepared at low temperatures have attracted much attention due to the great potential for flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited by low field effect mobility or rapidly degraded after exposing to air in many cases. Another approach is amorphous oxide semiconductors. Amorphous oxide semiconductors (AOSs) have exactly attracted considerable attention because AOSs were fabricated at room temperature and used lots of application such as flexible display, electronic paper, large solar cells. Among the various AOSs, a-IGZO was considerable material because it has high mobility and uniform surface and good transparent. The high mobility is attributed to the result of the overlap of spherical s-orbital of the heavy pest-transition metal cations. This study is demonstrated the effect of thickness channel layer from 30nm to 200nm. when the thickness was increased, turn on voltage and subthreshold swing were decreased. a-IGZO TFTs have used a shadow mask to deposit channel and source/drain(S/D). a-IGZO were deposited on SiO2 wafer by rf magnetron sputtering. using power is 150W, working pressure is 3m Torr, and an O2/Ar(2/28 SCCM) atmosphere at room temperature. The electrodes were formed with Electron-beam evaporated Ti(30nm) and Au(70nm) structure. Finally, Al(150nm) as a gate metal was evaporated. TFT devices were heat treated in a furnace at $250^{\circ}C$ in nitrogen atmosphere for an hour. The electrical properties of the TFTs were measured using a probe-station to measure I-V characteristic. TFT whose thickness was 150nm exhibits a good subthreshold swing(S) of 0.72 V/decade and high on-off ratio of 1E+08. Field effect mobility, saturation effect mobility, and threshold voltage were evaluated 7.2, 5.8, 8V respectively.

  • PDF

증착시 및 플라즈마 후처리에 의한 수소 주입이 투명 박막 트랜지스터에서 산화아연 채널층의 물성에 미치는 영향 (Effects of Hydrogen Injection by In-Situ and Plasma Post-Treatment on Properties of a ZnO Channel Layer in Transparent Thin Film Transistors)

  • 방정환;김원;엄현석;박진석
    • 반도체디스플레이기술학회지
    • /
    • 제9권1호
    • /
    • pp.35-40
    • /
    • 2010
  • We have investigated the effects of hydrogen injection via in-situ gas addition ($O_2$, $H_2$, or $O_2$ + $H_2$ gas) and plasma post-treatment (Ar or Ar + H plasma) on material properties of ZnO that is considered to be as a channel layer in transparent thin film transistors. The variations in the electrical resistivity, optical transmittance and bandgap energy, and crystal quality of ZnO thin films were characterized in terms of the methods and conditions used in hydrogen injection. The resistivity was significantly decreased by injection of hydrogen; approximately $10^6\;{\Omega}cm$ for as-grown, $1.2\;{\times}\;10^2\;{\Omega}cm$ for in-situ with $O_2/H_2\;=\;2/3$ addition, and $0.1\;{\Omega}cm$ after Ar + H plasma treatment of 90 min. The average transmittance of ZnO films measured at a wavelength of 400-700 nm was gradually increased by increasing the post-treatment time in Ar + H plasma. The optical bandgap energy of ZnO films was almost monotonically increased by decreasing the $O_2/H_2$ ratio in in-situ gas addition or by increasing the post-treatment time in Ar + H plasma, while the post-treatment using Ar plasma hardly affected the bandgap energy. The role of hydrogen in ZnO was discussed by considering the creation and annihilation of oxygen vacancies as well as the formation of shallow donors by hydrogen.

산소분압에 따른 IGZO 박막트랜지스터의 특성변화 연구

  • 한동석;강유진;박재형;윤돈규;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.497-497
    • /
    • 2013
  • Semiconducting amorphous InGaZnO (a-IGZO) has attracted significant research attention as improved deposition techniques have made it possible to make high-quality a-IGZO thin films. IGZO thin films have several advantages over thin film transistors (TFTs) based on other semiconducting channel layers.The electron mobility in IGZO devices is relatively high, exceeding amorphous Si (a-Si) by a factor of 10 and most organic devices by a factor of $10^2$. Moreover, in contrast to other amorphous semiconductors, highly conducting degenerate states can be obtained with IGZO through doping, yet such a state cannot be produced with a-Si. IGZO thin films are capable of mobilities greaterthan 10 $cm^2$/Vs (higher than a-Si:H), and are transparent at visible wavelengths. For oxide semiconductors, carrier concentrations can be controlled through oxygen vacancy concentration. Hence, adjusting the oxygen partial pressure during deposition and post-deposition processing provides an effective method of controlling oxygen concentration. In this study, we deposited IGZO thinfilms at optimized conditions and then analyzed the film's electrical properties, surface morphology, and crystal structure. Then, we explored how to generate IGZO thin films using DC magnetron sputtering. We also describe the construction and characteristics of a bottom-gate-type TFT, including the output and transfer curves and bias stress instability mechanism.

  • PDF

투명 박막 트랜지스터 응용을 위한 RF Magnetron Sputtering으로 증착된 ZnO:Ga 박막의 특성 (RF Magentron Sputtering deposited by ZnO:Ga thin film characterization for a transparent thin film transistor an application)

  • 이석진;권순일;박승범;정태환;임동건;박재환;양계준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.146-147
    • /
    • 2008
  • In this paper we report upon an investigation into the effect of sputter RF power on the electrical properties of Gallium doped zinc oxide (ZnO:Ga) film. Structural, electrical and optical properties of the ZnO:Ga films were investigation in terms of the sputtering power. Working pressure fixed in 5 mtorr and RF powers the variable did with 50~100 W. The result, We were able to without substrate temperature obtain resistivity of $9.3\times10^{-4}{\Omega}cm$ and optical transmittance of 90%.

  • PDF

투명 박막 트렌지스터 응용을 위한 RF power에 따른 ZnO 박막 특성 분석 (Characteristics of ZnO thin Film according to RF power for applying TFT channel layers)

  • 박청일;김영렬;박용섭;김형진;이성욱;홍병유
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.248-249
    • /
    • 2008
  • ZnO (Zinc Oxide) thin film can be applied to various devices. Recently, ZnO film has been promoted in transparent TFTs (thin film transistors) because of high transparency and low temperature process. In this paper, ZnO thin films were grown on glass with the three conditions of RF sputtering power, which are 50W, 75W, 100W. Their structural, electrical and optical properties were investigated by using XRD, UV-Visible spectrometer and 4-point probes. In the ZnO film with 50W process, good crystallinity, high transmittance, and high sheet resistance were shown. In conclusion, the ZnO film with 50W can be an optimal channel layer of TFTs.

  • PDF

Al Doped ZnO층 적용을 통한 ZnO 박막 트랜지스터의 전기적 특성과 안정성 개선 (Improvement of Electrical Performance and Stability in ZnO Channel TFTs with Al Doped ZnO Layer)

  • 엄기윤;정광석;윤호진;김유미;양승동;김진섭;이가원
    • 한국전기전자재료학회논문지
    • /
    • 제28권5호
    • /
    • pp.291-294
    • /
    • 2015
  • Recently, ZnO based oxide TFTs used in the flexible and transparent display devices are widely studied. To apply to OLED display switching devices, electrical performance and stability are important issues. In this study, to improve these electrical properties, we fabricated TFTs having Al doped Zinc Oxide (AZO) layer inserted between the gate insulator and ZnO layer. The AZO and ZnO layers are deposited by Atomic layer deposition (ALD) method. I-V transfer characteristics and stability of the suggested devices are investigated under the positive gate bias condition while the channel defects are also analyzed by the photoluminescence spectrum. The TFTs with AZO layer show lower threshold voltage ($V_{th}$) and superior sub-threshold slop. In the case of $V_{th}$ shift after positive gate bias stress, the stability is also better than that of ZnO channel TFTs. This improvement is thought to be caused by the reduced defect density in AZO/ZnO stack devices, which can be confirmed by the photoluminescence spectrum analysis results where the defect related deep level emission of AZO is lower than that of ZnO layer.

Electrical Characteristic of IGZO Oxide TFTs with 3 Layer Gate Insulator

  • Lim, Sang Chul;Koo, Jae Bon;Park, Chan Woo;Jung, Soon-Won;Na, Bock Soon;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.344-344
    • /
    • 2014
  • Transparent amorphous oxide semiconductors such as a In-Ga-Zn-O (a-IGZO) have advantages for large area electronic devices; e.g., uniform deposition at a large area, optical transparency, a smooth surface, and large electron mobility >10 cm2/Vs, which is more than an order of magnitude larger than that of hydrogen amorphous silicon (a-Si;H).1) Thin film transistors (TFTs) that employ amorphous oxide semiconductors such as ZnO, In-Ga-Zn-O, or Hf-In-Zn-O (HIZO) are currently subject of intensive study owing to their high potential for application in flat panel displays. The device fabrication process involves a series of thin film deposition and photolithographic patterning steps. In order to minimize contamination, the substrates usually undergo a cleaning procedure using deionized water, before and after the growth of thin films by sputtering methods. The devices structure were fabricated top-contact gate TFTs using the a-IGZO films on the plastic substrates. The channel width and length were 80 and 20 um, respectively. The source and drain electrode regions were defined by photolithography and wet etching process. The electrodes consisting of Ti(15 nm)/Al(120 nm)/Ti(15nm) trilayers were deposited by direct current sputtering. The 30 nm thickness active IGZO layer deposited by rf magnetron sputtering at room temperature. The deposition condition is as follows: a rf power 200 W, a pressure of 5 mtorr, 10% of oxygen [O2/(O2+Ar)=0.1], and room temperature. A 9-nm-thick Al2O3 layer was formed as a first, third gate insulator by ALD deposition. A 290-nm-thick SS6908 organic dielectrics formed as second gate insulator by spin-coating. The schematic structure of the IGZO TFT is top gate contact geometry device structure for typical TFTs fabricated in this study. Drain current (IDS) versus drain-source voltage (VDS) output characteristics curve of a IGZO TFTs fabricated using the 3-layer gate insulator on a plastic substrate and log(IDS)-gate voltage (VG) characteristics for typical IGZO TFTs. The TFTs device has a channel width (W) of $80{\mu}m$ and a channel length (L) of $20{\mu}m$. The IDS-VDS curves showed well-defined transistor characteristics with saturation effects at VG>-10 V and VDS>-20 V for the inkjet printing IGZO device. The carrier charge mobility was determined to be 15.18 cm^2 V-1s-1 with FET threshold voltage of -3 V and on/off current ratio 10^9.

  • PDF