• Title/Summary/Keyword: transparent oxide

Search Result 905, Processing Time 0.03 seconds

Characterization of conducting aluminium doped zinc oxide (ZnO:Al) thin films deposited on polymer substrates (폴리머 기판위에 증착된 ZnO:Al 전도막의 특성연구)

  • Koo, Hong-Mo;Kim, Se-Hyun;Park, Jong-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.535-538
    • /
    • 2004
  • Zinc Oxide (ZnO) films have attracted considerable attention for transparent conducting films, because of their high conductivity, good optical transmittance from UV to near IR as well as a low-cost fabrication. To increase the conductivity of ZnO, doping of group III elements (Al, Ga, In and B) has been carried out. Transparent conducting films have been applied for optoelectric devices, the development of the transparent conducting thin films on flexible light-weight substrates are required. In this research, the transparent conducting ZnO thin films doped with Aluminum (Al) on polymer substrates were deposited by the RF magnetron suputtering method, and the structural, optical and electrical properties were investigated.

  • PDF

AZO-Embedded Transparent Cu Oxide Photodetector (AZO 기반의 투명 Cu Oxide 광검출기)

  • Lee, Gyeong-Nam;Park, Wang-Hee;Um, Sung-Yun;Jang, Jun-min;Lim, Sol-Ma-Ru;Yun, Hyun-Chan;Hyeon, Seong-Woo;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.339-344
    • /
    • 2017
  • An all-transparent photodetector was fabricated by structuring $Cu_2O$/ZnO/AZO/ITO on a glass substrate. The visible-range transmittance was as high as 80%, which ensures clear vision forhuman eyes. High-transparency metal conductive oxides (p-type $Cu_2O$ and n-type ZnO) were appliedto form the transparent p/n junction. The functional AZO layer was adopted to improve the transparent photodetector performance between the ZnO and ITO, improving the photoresponses because of its electrical conductivity. To clarify the AZO functionality, a comparator device was prepared without the AZO layer in the formation of $Cu_2O$/ZnO/ITO/Glass. The $Cu_2O$/ZnO/AZO/ITO device provided a rectifying ratio of 113.46, significantly better than the 9.44 of the $Cu_2O$/ZnO/ITO device. In addition, the $Cu_2O$/ZnO/AZO/ITO device's photoresponses at short wavelengths were better than those of the comparator. The functioning AZO layer provides ahigh-performing transparent Cu oxide photodetector and may suggest a route for the design of efficient photoelectric devices.

AZO Transparent Electrodes for Semi-Transparent Silicon Thin Film Solar Cells (AZO 투명 전극 기반 반투명 실리콘 박막 태양전지)

  • Nam, Jiyoon;Jo, Sungjin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.401-405
    • /
    • 2017
  • Because silicon thin film solar cells have a high absorption coefficient in visible light, they can absorb 90% of the solar spectrum in a $1-{\mu}m$-thick layer. Silicon thin film solar cells also have high transparency and are lightweight. Therefore, they can be used for building integrated photovoltaic (BIPV) systems. However, the contact electrode needs to be replaced for fabricating silicon thin film solar cells in BIPV systems, because most of the silicon thin film solar cells use metal electrodes that have a high reflectivity and low transmittance. In this study, we replace the conventional aluminum top electrode with a transparent aluminum-doped zinc oxide (AZO) electrode, the band level of which matches well with that of the intrinsic layer of the silicon thin film solar cell and has high transmittance. We show that the AZO effectively replaces the top metal electrode and the bottom fluorine-doped tin oxide (FTO) substrate without a noticeable degradation of the photovoltaic characteristics.

A Study on Design of an Electromagnetic and Optical Characteristics in Transparent Conductor Coated Structures (투명 전도성 코팅체의 전자기적, 광학적 성능 설계 및 분석에 관한 연구)

  • Sung Sil Cho;Young Joon Yoon;Min Je Hwang;Kwang Sik Choi;Ic Pyo Hong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.15-23
    • /
    • 2024
  • In order to avoid the high observability due to the cavity resonance or electromagnetic wave leakages from the bridge of a battleship or the cockpit of an aircraft, this paper presents a transparent conductive oxide coated structure to prevent the incoming/outgoing electromagnetic waves. Currently, most of the RCS reduction technologies were focused on radar absorbing material such as paints based on conductive or magnetic materials in the fuselage, and there is not much research on countermeasures for achieving the low observability of materials that required optical transparency in actual weapon systems. In this study, the transmission/reflection and absorption performance of the ITO coated structure according to the change of the surface resistance of the transparent conductor were analyzed. Finally, the relationship between the electromagnetic and optical characteristics was established through fabrication and measurement.

The Characterization of Spin Coated ZnO TCO on the Flexible Substrates (Spin-coating을 이용하여 Flexible Film에 제작된 ZnO TCO의 특성 분석)

  • Jun, Min-Chul;Lee, Ku-Tak;Park, Sang-Uk;Lee, Kyung-Ju;Moon, Byung-Moo;Cho, Won-Ju;Koh, Jung-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.290-293
    • /
    • 2012
  • This article introduces the characterization of spin coated ZnO transparent conducting oxide on the flexible substrates. As a II-IV compound semiconductor, ZnO has a wide band gap of 3.37 eV with transparent properties. Due to this transparent properties, ZnO materials can be also employed as the transparent conducting electrode materials. Therefore, strong demands have been required for the transparent electrodes with low temperature processing and cheap cost. So, We will investigate the electrical property and optical transmittance of ZnO transparent conducting oxide through the 4-point probe resistivity meter, and ultraviolet-vis spectrometer Lamda 35, respectively.

Effect of Moisture on Cu(In,Ga)Se2 Solar Cell with (Ga,Al) Co-doped ZnO as Window Layer ((Ga,Al)이 도핑된 ZnO를 투명전극으로 가진 Cu(In,Ga)Se2 태양전지에 수분이 미치는 영향)

  • Yang, So Hyun;Bae, Jin A;Song, Yu Jin;Jeon, Chan Wook
    • Current Photovoltaic Research
    • /
    • v.5 no.4
    • /
    • pp.135-139
    • /
    • 2017
  • We fabricated two different transparent conducting oxide thin films of ZnO doped with Ga ($Ga_2O_3$ 0.9 wt%) as well as Al ($Al_2O_3$ 2.1 wt%) (GAZO) and ZnO doped only with Al ($Al_2O_3$ 3 wt%) (AZO). It was investigated how it affects the moisture resistance of the transparent electrode. In addition, $Cu(In,Ga)Se_2$ thin film solar cells with two transparent oxides as front electrodes were fabricated, and the correlation between humidity resistance of transparent electrodes and device performance of solar cells was examined. When both transparent electrodes were exposed to high temperature distilled water, they showed a rapid increase in sheet resistance and a decrease in the fill factor of the solar cell. However, AZO showed a drastic decrease in efficiency at the beginning of exposure, while GAZO showed that the deterioration of efficiency occurred over a long period of time and that the long term moisture resistance of GAZO was better.

Mechanically Flexible and Transparent Zinc Oxide Thin Film Transistor on Plastic Substrates (Plastic 기판 상의 투명성과 유연성을 지닌 Zinc Oxide 박막 트랜지스터)

  • Park, Kyung-Yea;Ahn, Jong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.10-10
    • /
    • 2009
  • We have fabricated transparent and flexible thin film transistor(TFT) on polyethylene terephthalate(PET) substrate using Zinc Oxide (ZnO) and Indium Tin Oxide (ITO) film as active layer and electrode. The transfer printing method was used for printing the device layer on target plastic substrate at room temperature. This approach have an advantage to separate the high temperature annealing process to improve the electrical properties of ZnO TFT from the device process on plastic substrate. The resulting devices on plastic substrate presented mechanical and electrical properties similar with those on rigid substrate.

  • PDF

Current Status of Low-temperature TCO Electrode for Solar-cell Application: A Short Review (고효율 태양전지 적용을 위한 저온 투명전극 소재 연구현황 리뷰)

  • Park, Hyeongsik;Kim, Youngkuk;Oh, Donghyun;Pham, Duy Phong;Song, Jaechun;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Transparent conducting oxide (TCO) films have been widely used in optoelectronic devices, such as OLEDs, TFTs, and solar cells. However, thin films of indium tin oxide (ITO) have few disadvantages pertaining to process parameters such as substrate temperature and sputtering power. In this study, we investigated the requirements for using TCO films in silicon-based solar cells and the best alternative TCO materials to improve their efficiency. Moreover, we discussed the current status of high-efficiency solar cells using low-temperature TCO films such as indium zinc oxide and Zr-doped indium oxide.

V2O5 Embedded All Transparent Metal Oxide Photoelectric Device (V2O5 기반의 금속 산화물 투명 광전소자)

  • Kim, Sangyun;Choi, Yourim;Lee, Gyeong-Nam;Kim, Joondong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.789-793
    • /
    • 2018
  • All transparent metal oxide photoelectric device based on $V_2O_5$ was fabricated with structure of $V_2O_5/ZnO/ITO$ by magnetron sputtering system. $V_2O_5$ was deposited by reactive sputtering system with 4 inch vanadium target (purity 99.99%). In order to achieve p-n junction, p-type $V_2O_5$ was deposited onto the n-type ZnO layer. The ITO (indium tin oxide) was applied as the electron transporting layer for effective collection of the photo-induced electrons. Electrical and optical properties were analyzed. The Mott-Schottky analysis was applied to investigate the energy band diagram through the metal oxide layers. The $V_2O_5/ZnO/ITO$ photoelectric device has a rectifying ratio of 99.25 and photoresponse ratios of 1.6, 4.88 and 2.68 under different wavelength light illumination of 455 nm, 560 nm and 740 nm. Superior optical properties were realized with the high transmittance of average 70 % for visible light range. Transparent $V_2O_5$ layer absorbs the short wavelength light efficiently while passing the visible light. This research may provide a route for all-transparent photoelectric devices based on the adoption of the emerging p-type $V_2O_5$ metal oxide layer.

Annealing Effects of Gate-insulator on the Properties of Zinc Tin Oxide Transparent Thin Film Transistors (게이트절연막의 열처리가 Zinc Tin Oxide 투명 박막트랜지스터의 특성에 미치는 영향)

  • Ma, Tae Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.365-370
    • /
    • 2015
  • Zinc tin oxide transparent thin film transistors (ZTO TTFTs) were fabricated on oxidized $n^+$ Si wafers. The thickness of ~30 nm $Al_2O_3$ films were deposited on the oxidized Si wafers by atomic layer deposition, which acted as the gate insulators of ZTO TTFTs. The $Al_2O_3$ films were rapid-annealed at $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$, and $1,000^{\circ}C$, respectively. Active layers of ZTO films were deposited on the $Al_2O_3/SiO_2$ coated $n^+$ Si wafers by rf magnetron sputtering. Mobility and threshold voltage were measured as a function of the rapid-annealing temperature. X-ray photoelectron spectroscopy (XPS) were carried out to observe the chemical bindings of $Al_2O_3$ films. The annealing effects of gate-insulator on the properties of TTFTs were analyzed based on the results of XPS.