• 제목/요약/키워드: transparent optical films

검색결과 552건 처리시간 0.028초

GZO/Metal/GZO 하이브리드 구조 투명 전도막의 전기적, 광학적 특성; Ag, Cu, Al, Zn 금속 삽입층의 효과 (Electrical and Optical Properties of Transparent Conducting Films having GZO/Metal/GZO Hybrid-structure; Effects of Metal Layer(Ag, Cu, Al, Zn))

  • 김현범;김동호;이건환;김광호
    • 한국표면공학회지
    • /
    • 제43권3호
    • /
    • pp.148-153
    • /
    • 2010
  • Transparent conducting films having a hybrid structure of GZO/Metal/GZO were prepared on glass substrates by sequential deposition using DC magnetron sputtering. Silver, copper, aluminum and zinc thin films were used as the intermediate metal layers in the hybrid structure. The electrical and optical properties of hybrid transparent conducting films were investigated with varying the thickness of metal layer or GZO layers. With increasing the metal thickness, hybrid films showed a noticeable improvement of the electrical conductivity, which is mainly dependent on the electrical property of the metal layer. GZO(40 nm)/Ag(10 nm)/GZO(40 nm) film exhibits a resistivity of $5.2{\times}10^{-5}{\Omega}{\cdot}cm$ with an optical transmittance of 82.8%. For the films with Zn interlayer, only marginal reduction in the resistivity was observed. Furthermore, unlike other metals, hybrid films with Zn interlayer showed a decrease in the resistivity with increasing the GZO thickness. The optimal thickness of GZO layer for anti-reflection effect at a given thickness of metal (10 nm) was found to be critically dependent on the refractive index of the metal. In addition, x-ray diffraction analysis showed that the insertion of Ag layer resulted in the improvement of crystallinity of GZO films, which is beneficial for the electrical and optical properties of hybrid-type transparent conducting films.

솔젤법으로 제작한 ZnO 박막의 광전도특성 연구 (Transparent conducting ZnO thin films deposited by a Sol-gel method)

  • 김경태;김관하;김종규;우종창;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.320-320
    • /
    • 2007
  • Nowadays, ZnO thin films are investigated as transparent conductive electrodes for use in optoelectronics devices including flat displays, thin films transistors, solar cells because of their unique optical and electrical properties. For the use as transparent conductive electrodes, a film has to have low resistivity, high absorption in the ultra violent light region and high optical transmission in the visible region. Different technologies such as electron beam evaporation, chemical vapor deposition, laser evaporation, DC and RF magnetron sputtering and have been reported to produce thin films of ZnO with adequate performance for applications. However, highly transparent and conductive doped-ZnO thin films deposited by a metal-organic decomposition method have not been reported before. In this work, the effect of dopant concentration, heating treatment and annealing in areducing atmosphere on the structure, morphology, electrical and optical properties of ZnO thin films deposited on glass substrates by a Sol-gel method are investigated.

  • PDF

액정표시소자용 ITO 투명전극의 특성에 관한 연구 (Transparent Conductive ITO thin flims for Liquid Crystal Display)

  • 김호수;김도영;최병균;구경완;한상옥
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1553-1555
    • /
    • 2003
  • Coatings on glass with highly transparent conducting oxide films(TCOs) are performed mostly by using indium tin oxide(ITO). This Oxide material is very common for applications where both high electrical conductivity. Photovoltaic cells, transparent electrical heater, selective optical filter, and a optical transmittance are essential. In this study, ITO thin films were deposited on $SiO_2$/soda-line glass plates by a dc magnetron sputtering technique. The crystallinity and electrical properties of the films were investigated by X-ray diffraction(XRD), atomic force microscopy(AFM) scanning and 4-point probe. The optical transmittance of ITO films in the range of 300-800nm were measured with a spectrophotometer. As a result, we obtained polycrystalline structured ITO films with (222), (400), and (440) peak. Transmittance of all the films were higher than 90% in the visible range.

  • PDF

RF magnetron sputtering법으로 형성된 IGZO박막의 RF power에 따른 광학적 및 전기적 특성 (The optical and electrical properties of IGZO thin film fabricated by RF magnetron sputtering according to RF power)

  • 장야쥔;김홍배
    • 반도체디스플레이기술학회지
    • /
    • 제12권1호
    • /
    • pp.41-45
    • /
    • 2013
  • IGZO transparent conductive thin films were widely used as transparent electrode of optoelectronic devices. We have studied the optical and electrical properties of IGZO thin films. The IGZO thin films were deposited on the corning 1737 glass by RF magnetron sputtering method. The RF power in sputtering process was varied as 25, 50, 75and 100 W, respectively. All of the thin films transmittance in the visible range was above 85%. XRD analysis showed that amorphous structure of the thin films without any peak. The thin films were electrically characterized by high mobility above $13.4cm^2/V{\cdot}s$, $7.0{\times}10^{19}cm^{-3}$ high carrier concentration and $6{\times}10^{-3}{\Omega}-cm$ low resistivity. By the studies we found that IGZO transparent thin film can be used as transparent electrodes in electronic devices.

폴리머 기판위에 증착된 ZnO:Al 전도막의 특성연구 (Characterization of conducting aluminium doped zinc oxide (ZnO:Al) thin films deposited on polymer substrates)

  • 구홍모;김쇄현;박종완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.535-538
    • /
    • 2004
  • Zinc Oxide (ZnO) films have attracted considerable attention for transparent conducting films, because of their high conductivity, good optical transmittance from UV to near IR as well as a low-cost fabrication. To increase the conductivity of ZnO, doping of group III elements (Al, Ga, In and B) has been carried out. Transparent conducting films have been applied for optoelectric devices, the development of the transparent conducting thin films on flexible light-weight substrates are required. In this research, the transparent conducting ZnO thin films doped with Aluminum (Al) on polymer substrates were deposited by the RF magnetron suputtering method, and the structural, optical and electrical properties were investigated.

  • PDF

Effects of Annealing Temperature on Properties of Al-Doped ZnO Thin Films prepared by Sol-Gel Dip-Coating

  • Jun, Min-Chul;Koh, Jung-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.163-167
    • /
    • 2013
  • Aluminum doped zinc oxide (AZO) thin films have been prepared on the glass substrates (Corning 1737) by sol-gel dip-coating method employing zinc acetate and aluminum chloride hexahydrate for the transparent conducting oxide (TCO) applications. 1 at% Al was doped to the ZnO thin films. The effects of post-heating temperature on the crystallization, optical and electrical properties of the AZO films have been investigated. Experimental results showed that post-heating temperature affected the microstructure, electrical resistance, and optical transmittance of the AZO films. From the X-ray diffraction analysis, all films have hexagonal wurtzite crystal structure. Optical transmittance spectra of the AZO films exhibited transmittance higher than about 80% within the visible wavelength region and the optical direct band gap ($E_g$) of these films was increased with increasing post-heating temperature. A minimum resistivity of $2.5{\times}10^{-3}{\Omega}cm$ was observed at $650^{\circ}C$.

Thermal Conduction in Transparent Carbon Nanotube Films

  • Zhu, Lijing;Kim, Duck-Jong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.201-201
    • /
    • 2012
  • Using materials with high thermal conductivity is a matter of great concern in the field of thermal management. In this study, we present our experimental results on an important physical property of carbon nanotube (CNT) films, two-dimensional thermal conductivity obtained by using an optical method based on Raman spectroscopy. We prepared four kinds of CNT films to investigate the effect of CNT type on heat spreading performance of films. This first comparative study using the optical method shows that the arc-discharge single-walled carbon nanotubes yield the best heat spreading film. And we observed thermal conductivity values of CNT films with various transmittances and found that the Raman method works as long as the sample is a transparent film. This study provides useful information on characterization of thermal conduction in transparent CNT films and could be an important step toward high-performance carbon-based heat spreading films.

  • PDF

Pyrosol법에 의한 ZnO투명전도막의 전기적 광학적 특성 (Electrical and Optical Properties of ZnO Transparent Conducting Thin Films by Pyrosol Deposition Method)

  • 조우영;송진수;강기환;윤경훈;임경수
    • 대한전기학회논문지
    • /
    • 제43권6호
    • /
    • pp.965-970
    • /
    • 1994
  • ZnO transparent conducting oxide thin films have been prepared by Pyrosol deposition method and the effects of the different experimental variables on the electrical resistivity and optical transmittance of the prepared films have been investigated in details. The best film with a resistivity of about 8 X 10S0-2TΩcm and transmittance about 80% has been obtained at the substrate temperature of 4$25^{\circ}C$ by using HS12T+CHS13TOH(1:3) solvent and NS12T carrier gas after annealing at 20$0^{\circ}C$ for 40 minutes in vacuum. Furthermore, We have also found the effect of substrate temperature on crystallographic orientation and surface morphology. Annealing of the as-deposited film in vacuum leads to a substantial reduction in resistivity without affecting the optical transmittance and crystallographic orientation.

  • PDF

RF/DC 스퍼티 성장한 ITO/Ag/ITO 투명전극 박막의 특성 연구 (Characterisitics of RF/DC Sputter Grown-ITO/Ag/ITO Thin Films for Transparent Conducting Electrode)

  • 이영재;김제하
    • Current Photovoltaic Research
    • /
    • 제10권1호
    • /
    • pp.28-32
    • /
    • 2022
  • We investigated the optical and electrical characteristics of ITO/Ag/ITO (IAI) 3-layer thin films prepared by using RF/DC sputtering. To measure the thickness of all thin film samples, we used scanning electron microscopy. As a function of Ag thickness we characterized the optical transmittance and sheet resistance of the IAI samples by using UV-Visible spectroscopy and Hall measurement system, respectively. While the thickness of both ITO thin films in the 3-layered IAI samples were fixed at 50 nm, we varied Ag layer thickness in the range of 0 nm to 11 nm. The optical transmittance and sheet resistance of the 3-layered IAI thin films were found to vary strongly with the thickness of Ag film in the ITO (50 nm)/Ag(t0)/ITO (50 nm) thin film. For the best transparent conducting oxide (TCO) electrode, we obtained a 3-layered ITO (50 nm)/Ag (t0 = 8.5 nm)/ITO (50 nm) that showed an avrage optical transmittance, AVT = 90.12% in the visible light region of 380 nm to 780 nm and the sheet resistance, R = 7.24 Ω/□.

Properties of ITO/Cu/ITO Multilayer Films for Application as Low Resistance Transparent Electrodes

  • Kim, Dae-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권5호
    • /
    • pp.165-168
    • /
    • 2009
  • Transparent and conducting ITO/Cu/ITO multilayered films were deposited by magnetron sputtering on unheated polycarbonate (PC) substrates. The thickness of the Cu intermediate film was varied from 5 to 20 nm. Changes in the microstructure and optoelectrical properties of ITO/Cu/ITO films were investigated with respect to the thickness of the Cu intermediated layer. The optoelectrical properties of the films were significantly influenced by the thickness of the Cu interlayer. The sandwich structure of ITO 50 nm/Cu 5 nm/ITO 45 nm films had a sheet resistance of $36{\Omega}$/Sq. and an optical transmittance of 67% (contain substrate) at a wavelength of 550 nm, while the ITO 50 nm/Cu 20 nm/ITO 30 nm films had a sheet resistance of $70{\Omega}$/Sq. and an optical transmittance of 36%. The electrical and optical properties of ITO/Cu/ITO films were determined mainly by the Cu film properties. From the figure of merit, it is concluded that the ITO/Cu/ITO films with a 5 nm Cu interlayer showed the better performance in transparent conducting electrode applications than the conventional ITO films.