Browse > Article
http://dx.doi.org/10.4313/TEEM.2009.10.5.165

Properties of ITO/Cu/ITO Multilayer Films for Application as Low Resistance Transparent Electrodes  

Kim, Dae-Il (School of Materials Science and Engineering, University of Ulsan)
Publication Information
Transactions on Electrical and Electronic Materials / v.10, no.5, 2009 , pp. 165-168 More about this Journal
Abstract
Transparent and conducting ITO/Cu/ITO multilayered films were deposited by magnetron sputtering on unheated polycarbonate (PC) substrates. The thickness of the Cu intermediate film was varied from 5 to 20 nm. Changes in the microstructure and optoelectrical properties of ITO/Cu/ITO films were investigated with respect to the thickness of the Cu intermediated layer. The optoelectrical properties of the films were significantly influenced by the thickness of the Cu interlayer. The sandwich structure of ITO 50 nm/Cu 5 nm/ITO 45 nm films had a sheet resistance of $36{\Omega}$/Sq. and an optical transmittance of 67% (contain substrate) at a wavelength of 550 nm, while the ITO 50 nm/Cu 20 nm/ITO 30 nm films had a sheet resistance of $70{\Omega}$/Sq. and an optical transmittance of 36%. The electrical and optical properties of ITO/Cu/ITO films were determined mainly by the Cu film properties. From the figure of merit, it is concluded that the ITO/Cu/ITO films with a 5 nm Cu interlayer showed the better performance in transparent conducting electrode applications than the conventional ITO films.
Keywords
ITO; Cu; Magnetron sputter; Sheet resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Mohammadi Gheidari, E. Asl Soleimani, M. Mansorhoseini, S. Mohajerzadeh, N. Madani, and W. Shams-Kolah, Mater. Res. Bull. 40, 1303 (2005)   DOI   ScienceOn
2 U. Betz, M. Kharrazi Olsson, J. Marthy, M. F. Escola, and F. Atamny, Surf. Coat. Technol. 200, 5751 (2006)   DOI   ScienceOn
3 Y. S. Jung, Y. W. Choi, H. C. Lee, and D. W. Lee, Thin Solid Films, 440, 278 (2003)   DOI   ScienceOn
4 X. W. Sun, H. C. Huang, and H. S. Kwok, Appl. Phys. Lett. 68, 2663 (1996)   DOI
5 Z. Z. You and J. Y. Dong, Microelectron. J. 38, 108 (2007)   DOI   ScienceOn
6 Y. S. Kim, J. H. Park, D. H. Choi, H. S. Jang, J. H. Lee, H. J. Park, J. I. Choi, D. H. Ju, J. Y. Lee, and D. Kim, Appl. Surf. Sci. 254, 1524 (2007)   DOI   ScienceOn
7 G. Haacke, J. Appl. Phys. 47, 4086 (1976)   DOI   ScienceOn
8 T.-C. Lin, S. C. Chang, and C. F. Chiu, Mater. Sci. Eng., B, 129, 39 (2006)   DOI   ScienceOn
9 A. Klöppel, W. Kriegseis, B. K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, and J. Trube, Thin Solid Films, 365, 139 (2000)   DOI   ScienceOn
10 C.-H. Yang, S. C. Lee, T.-C. Lin, and W.-Y. Zhuang, Mater. Sci. Eng., B, 134, 68 (2006)   DOI   ScienceOn
11 A. Nakasa, M. Adachi, H. Usami, and E. Suzuki, Thin Solid Films, 498, 240 (2006)   DOI   ScienceOn