• Title/Summary/Keyword: transparent and conducting films

Search Result 325, Processing Time 0.033 seconds

Doping-free Transparent Conducting Schottky Type Heterojunction Solar Cells

  • Kim, Joon-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.209-209
    • /
    • 2012
  • High-efficient transparent conductive oxide (TCO) film-embedding Si heterojunction solar cells were fabricated. An additional doping was not applied for heterojunction solar cells due to the spontaneous junction formation between TCO films and an n-type Si substrate. Three different TCO coatings were formed by sputtering method for an Al-doped ZnO (AZO) film, an indium-tin-oxide (ITO) film and double stacks of ITO/AZO films. An improved crystalline ITO film was grown on an AZO template upon hetero-epitaxial growth. This double TCO films-embedding Si heterojunction solar cell provided significantly enhanced efficiency of 9.23% as compared to the single TCO/Si devices. The effective arrangement of TCO films (ITO/AZO) provides benefits of a lower front contact resistance and a smaller band offset to Si leading enhanced photovoltaic performances. This demonstrates a potential scheme of the effective TCO film-embedding heterojunction Si solar cells.

  • PDF

Effects of Deposition Thickness and Oxygen Introduction Flow Rate on Electrical and Optical Properties of IZO Films (증착두께 및 산소도입속도가 IZO 필름의 전기 및 광학적 특성에 미치는 영향)

  • Park, Sung-Hwan;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.224-229
    • /
    • 2010
  • Transparent conductive oxide films have been widely used in the field of flat panel display (FPD). Transparent conductive Indium Zinc Oxide (IZO) thin films with excellent chemical stability have attracted much attention as an alternative material for Indium Tin Oxide (ITO) films. In this study, using $In_2O_3$ and ZnO powder mixture with a ratio of 90 : 10 wt% as a target, IZO films are prepared on polynorbornene (PNB) substrates by electron beam evaporation. The effect of thickness and $O_2$ introduction flow rate on the optical, electrical, structural properties and surface composition of deposited IZO films were investigated by UV/Visible spectrophotometer, 4-point probe method, SEM, XRD and XPS.

Structural, Optical, and Electrical Properties of In2O3 Thin Films Deposited on Various Buffer Layers (다양한 버퍼층 위에 증착한 In2O3 박막의 구조, 광학 및 전기적 특성)

  • Kim, Moon-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.491-495
    • /
    • 2012
  • The effects of various buffer layers on the $In_2O_3$ transparent conducting films grown on glass substrates by radio-frequency reactive magnetron sputtering were investigated. The $In_2O_3$ thin films were deposited at $400^{\circ}C$ of growth temperature and 100% of oxygen flow rate. The optical, electrical, and structural and morphological properties of the $In_2O_3$ thin films subjected to buffer layers were examined by using ultraviolet-visible spectrophotometer, Hall-effect measurements, and X-ray diffractometer, respectively. The properties of $In_2O_3$ thin films showed different results, depending on the type of buffer layer. As for the $In_2O_3$ thin film deposited on ZnO buffer layer, the average transmittance was 89% and the electrical resistivity was $7.4{\times}10^{-3}\;{\Omega}cm$. The experimental results provide a way for growing the transparent conducting film with the optimum condition by using an appropriate buffer layer.

Rapid thermal annealing effect of IZO transparent conducting oxide films grown by a box cathode sputtering (박스캐소드 스퍼터로 성장시킨 IZO 투명 전도막의 급속 열처리 효과)

  • Bae, Jung-Hyeok;Moon, Jong-Min;Jeong, Soon-Wook;Kim, Han-Ki;Yi, Min-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.473-474
    • /
    • 2006
  • We report on the rapid thermal annealing effect on the electrical, optical, and structural properties of IZO transparent conducting oxide films grown by box cathode sputtering (BCS). To investigate structural properties of rapid thermal annealed IZO films in $N_2$ atmosphere as a function of annealing temperature, syncrotron x-ray scattering experiment was carried out. It was shown that the amorphous structure of the IZO films was maintained until $400^{\circ}C$ because ZnO and $In_2O_3$ are immiscible and must undergo phase separation to allow crystallization. In addition, the IZO films grown at different Ar/$O_2$ ratio of 30/1.5 and 30/0 showed different preferred (222) and (440) orientation, respectively, with increase of rapid thermal annealing temperature. The electrical properties of the OLED with rapid thermal annealed IZO anode was degraded as rapid thermal annealing temperature of IZO increased. This indicates the amorphous IZO anode is more beneficial to make high-quality OLEDs.

  • PDF

Atomic Layer Deposition for Display Applications

  • Park, Jin-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.76.1-76.1
    • /
    • 2013
  • Atomic Layer Deposition (ALD) has remarkably developed in semiconductor and nano-structure applications since early 1990. Now, the advantages of ALD process are well-known as controlling atomic-level-thickness, manipulating atomic-level-composition control, and depositing impurity-free films uniformly. These unique properties may accelerate ALD related industries and applications in various functional thin film markets. On the other hand, one of big markets, Display industry, just starts to look at the potential to adopt ALD functional films in emerging display applications, such as transparent and flexible displays. Unlike conventional ALD process strategies (good quality films and stable precursors at high deposition processes), recently major display industries have suggested the following requirements: large area equipment, reasonable throughput, low temperature process, and cost-effective functional precursors. In this talk, it will be mentioned some demands of display industries for applying ALD processes and/or functional films, in terms of emerging display technologies. In fact, the AMOLED (active matrix organic light emitting diode) Television markets are just starting at early 2013. There are a few possibilities and needs to be developing for AMOLED, Flexible and transparent Display markets. Moreover, some basic results will be shown to specify ALD display applications, including transparent conduction oxide, oxide semiconductor, passivation and barrier films.

  • PDF

The Fabrication and Properties of Ito Transparent Conducting Film for PDP by the Discharge Plasma Analysis (방전플라즈마 해석을 통한 PDP용 ITO 투명전도막의 제작 및 특성)

  • 곽동주;조문수;박강일;임동건
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.902-907
    • /
    • 2003
  • In this paper, the ITO thin film, which is considered as one of the most currently used material for the high performance transparent conducting films for the PDP cell, was made in a parallel-plate, capacitively coupled DC magnetron sputtering system. Some electrical and optical properties of ITO films were investigated and discussed on the basis of glow discharge characteristics. The optimized thin film fabricating conditions of Ar gas pressure and substrate temperature were derived from the Paschen curve and glow discharge characteristics. The maximum transmittance of 89.61 % in the visible region and optical band gap of 3.89 eV and resistivity of 1.67${\times}$10$\^$-3/ $\Omega$-cm were obtained under the conditions of 300 C of substrate temperature and 10∼15 mtorr of pressure, which corresponds nearly to that of Paschen minimum.

Fabrication of OLED using low cost transparent conductive thin films (저가격 투명전극을 이용한 OLED의 제작)

  • Lee, B.J.;Shin, P.K.;You, D.H.;Ji, S.H.;Lee, N.H.;Park, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1281-1282
    • /
    • 2008
  • Low cost TCO(Transparent Conductive oxide) thin films were prepared by 3" DC/RF magnetron sputtering systems. For the AZO preparation processes a 99.99% AZO target (Zn: 98 wt.%, $Al_2O_3$: 2 wt.%) was used. In order to verify feasibility of the AZO thin films to organic light emitting device (OLED) application, test organic light emitting device was fabricated based on AZO as TCO, TPD as hole transporting layer (HTL), Alq3 as both emitting layer (EML) and electron transporting layer (ETL), and aluminium as cathode, where the both ITO and AZO surfaces were treated using $O_2$ RF plasma. The I-V characteristics of the AZO/TPD/Alq3/Al OLEDs were evaluated. As the results, the performance of the OLEDs with AZO as transparent conducting anode could be useable.

  • PDF

Effects of Different Dopants(B, AI, Ga, In) on the Properties of Transparent conducting ZnO Thin Films (B, Al, Ga, In의 도핑물질이 투명 전도성 ZnO 박막의 특성에 미치는 영향)

  • No, Young-Woo;Cho, Jong-Rae;Son, Se-Mo;Chung, Su-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.242-248
    • /
    • 2008
  • The structural, optical and electrical properties of ZnO films doped with 1.5 at% of 3A materials(B, Al, Ga, In) were studied by sol-gel process. The films were found to be c-axis (002) oriented hexagonal structure on glass substrate, when post heated at 500 $^{\circ}C$. The surface of the films showed a uniform and nano size microstructure and the crystalline size of doped films decreased. The lattice constants of ZnO:B/Al/Ga increased than that of ZnO, while ZnO:In decreased. All the films were highly transparent(above 90 %) in the visible region. The energy gaps of ZnO:B/Al/Ga were increased a little, but that of ZnO:In was not changed. The resistivities of ZnO:Al/Ga/In were less than 0.1 $\Omega$cm. All the films showed a semiconductor properties in the light or temperature, however ZnO:In was less sensitive to it. A figure of merit of ZnO:In had the highest value of 0.025 $\Omega^{-1}$ in all samples.

Substrate Bias Voltage Dependence of Electrical Properties for ZnO:Al Film by DC Magnetron Sputtering (Bias 전압에 따른 ZnO:Al 투명전도막의 전기적 특성)

  • 박강일;김병섭;임동건;이수호;곽동주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.738-746
    • /
    • 2004
  • Recently zinc oxide(ZnO) has emerged as one of the most promising transparent conducting films with a strong demand of low cost and high performance optoelectronic devices, ZnO film has many advantages such as high chemical and mechanical stabilities, and abundance in nature. In this paper, in order to obtain the excellent transparent conducting film with low resistivity and high optical transmittance for Plasma Display Pannel(PDP), aluminium doped zinc oxide films were deposited on Corning glass substrate by dc magnetron sputtering method. The effects of the discharge power and doping amounts of $Al_2$$O_3$ on the electrical and optical properties were investigated experimentally. Particularly in order to lower the electrical resistivity, positive and negative bias voltages were applied on the substrate, and the effect of bias voltage on the electrical properties of ZnO:Al thin film were also studied and discussed. Films with lowest resistivity of $4.3 \times 10 ^{-4} \Omega-cm$ and good transmittance of 91.46 % have been achieved for the films deposited at 1 mtorr, $400^{\circ}C$, 40 W, Al content of 2 wt% with a substrate bias of +30 V for about 800 nm in film thickness.

Fabrication of IGZO Transparent Conducting thin Films by The Use of Combinational Magnetron Sputtering (콤비네이숀 마그네트론 스퍼터링법에 의한 IGZO 투명전도막의 제조)

  • Jung, Jae-Hye;Lee, Se-Jong;Cho, Nam-In;Lee, Jai-Youl
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.425-425
    • /
    • 2008
  • The transparent conducting oxides(TCOs) are widely used as electrodes for most flat panel display devices(FPDs), electrodes in solar cells and organic light emitting diodes(OLED). Among them, indium oxide materials are mostly used due to its high electrical conductivity and a high transmittance in the visible spectrum. The present study reports on a study of the electrical and optical properties of IGZO thin films prepared on glass and PET substrates by the combinational magnetron sputtering. We use the targets of IZO and Ga2O3 for the deposition process. In some case the deposition process is coupled with the End-Hall ion-beam treatment onto the substrates before the sputtering. In addition we control the deposition rate to optimize the film quality and to minimize the surface roughness. Then we investigate the effects of the Ar gas pressure and RF power during the sputtering process upon the electrical, optical and morphological properties of thin films. The properties of prepared IGZO thin films have been analyzed by using the XRD, AFM, a-step, 4-point probe, and UV spectrophotometer.

  • PDF