• Title/Summary/Keyword: transmittance function

Search Result 207, Processing Time 0.033 seconds

Determination of Optical Constants of Organic Light-Emitting-Material Alq3 Using Jellison-Modine Dispersion Relation (Jellison Modine 분산식을 이용안 유기발광물질 Alq3의 광학상수 결정)

  • Park, Myung-Hee;Lee, Soon-Il;Koh, Ken-Ha
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.4
    • /
    • pp.267-272
    • /
    • 2005
  • We deposited thin films of organic light-emitting-material $Alq_3$(alumina quinoline) on silicon and slide-glass substrates using thermal evaporation method, and measured spectra of ellipsometry angles ${\Delta}$ and ${\Psi}$ in the photon-energy range of 1.5~5.0 eV using a variable angle spectroscopic ellipsometer. The optical constants, refractive index and extinction coefficient, of $Alq_3$ were determined via the dispersion parameters extracted from the curve-fitting process based on Jellison-Modine dispersion function. The reliability of determined optical constants were verified through the comparison of measured and simulated transmittance curves and the good agreement between simulated absorption-coefficient curves and absorbance spectra measured using a spectrophotometer.

  • PDF

A Study on the Selective Hole Carrier Extraction Layer for Application of Amorphous/crystalline Silicon Heterojunction Solar Cell (이종접합 실리콘 태양전지 적용을 위한 선택적 전하접합 층으로의 전이금속산화물에 관한 연구)

  • Kim, Yongjun;Kim, Sunbo;Kim, Youngkuk;Cho, Young Hyun;Park, Chang-kyun;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.192-197
    • /
    • 2017
  • Hydrogenated Amorphous Silicon (a-Si:H) is used as an emitter layer in HIT (heterojunction with Intrinsic Thin layer) solar cells. Its low band gap and low optical properties (low transmittance and high absorption) cause parasitic absorption on the front side of a solar cell that significantly reduces the solar cell blue response. To overcome this, research on CSC (carrier Selective Contacts) is being actively carried out to reduce carrier recombination and improve carrier transportation as a means to approach the theoretical efficiency of silicon solar cells. Among CSC materials, molybdenum oxide ($MoO_x$) is most commonly used for the hole transport layer (HTL) of a solar cell due to its high work function and wide band gap. This paper analyzes the electrical and optical properties of $MoO_x$ thin films for use in the HTL of HIT solar cells. The optical properties of $MoO_x$ show better performance than a-Si:H and ${\mu}c-SiO_x:H$.

Effect of Glazing Systems on Chromaticity and Color Temperature in the Office Room (투과체에 적용된 채광방식이 사무소공간의 색도 및 색온도분포에 미치는 영향 분석)

  • Jeong, In-Young;Kim, Jeong-Tai
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.18-26
    • /
    • 2007
  • One basic function of glazing system has always been the maintenance of visual contact with the natural environment-a fundamentally ecological function. In addition, penetration light through glazing system have an effect on variable atmosphere of interior. In this study, a typical office space was selected as a evaluation model and a 1/10 scale model was made. The conventional window, differentiated window and interior lightshelf were designed to enhance daylighting performance. The chromaticity and color temperature of interior space was measured using Prometric 1421. The result showed that transmittance by wavelength range of the glazing had an effect on chromaticity and color temperature. Also, color temperature of indoor environment were increased by $5{\sim}20[%]$ using differentiated window and interior lightshelf. Accordingly, it is thought that the use of a daylighting system will create activate indoor atmosphere.

Development of Hydrogel for Decrease Protein Adsorption and Application to Intraocular Lens (단백질흡착 감소용 하이드로겔의 개발 및 인공수정체로의 적용)

  • Ko, Na Young;Lee, Hyun Mee
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.1
    • /
    • pp.30-35
    • /
    • 2018
  • The purpose of this study was to decrease the protein adsorption and improve the function of the hydrophobic acrylic Intraocular lens(IOL). Hydrophobic acrylic intraocular lenses were prepared by using ethyleneglycol phenyletheracrylate (EGPEA), styrene and 2-hydroxyethyl methacrylate (HEMA). Polyvinyl pyrrolidone (PVP) and 2-methacryloyloxyethyl phosphorylcholine (MPC) were used as additives. Water contents, wettability, light transmittance and protein adsorption amount were measured to evaluate the physical properties of the intraocular lens. The water content and wettability of all samples containing additives were increased and the amount of protein adsorption decreased. In particular, samples containing MPC showed a further decrease in protein adsorption. The hydrophobic acrylic intraocular lens with PVP and MPC was found to improve the function of the intraocular lens by reducing the protein adsorption while having basic physical properties.

Effect of the substrate temperature on the properties of transparent conductive IZTO films prepared by pulsed DC magnetron sputtering

  • Ko, Yoon-Duk;Kim, Joo-Yeob;Joung, Hong-Chan;Son, Dong-Jin;Choi, Byung-Hyun;Kim, Young-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.167-167
    • /
    • 2010
  • Indium tin oxide (ITO) has been widely used as transparent conductive oxides (TCOs) for transparent electrodes of various optoelectronic devices, such as liquid crystal displays (LCD) and organic light emitting diodes (OLED). However, indium has become increasingly expensive and rare because of its limited resources. In addition, ITO thin films have some problems for OLED and flexible displays, such as imperfect work function, chemical instability, and high deposition temperature. Therefore, multi-component TCO materials have been reported as anode materials. Among the various materials, IZTO thin films have been gained much attention as anode materials due to their high work function, good conductivity, high transparency and low deposition temperature. IZTO thin films with a thickness of 200nm were deposited on Corning glass substrate at different substrate temperature by pulsed DC magnetron sputtering with a sintered ceramic target of IZTO (In2O3 70 wt%, ZnO 15 wt%, SnO2 15 wt%). We investigated the electrical, optical, structural properties of IZTO thin films. As the substrate temperature is increased, the electrical properties of IZTO are improved. All IZTO thin films have good optical properties, which showed an average of transmittance over 80%. These IZTO thin films were used to fabricate organic light emitting diodes (OLEDs) as anode and the device performances studied. As a result, IZTO has utility value of TCO electrode although it reduced indium and we expect it is possible for the IZTO to apply to flexible display due to the low processing temperature.

  • PDF

Characteristics of flexible IZO/Ag/IZO anode on PC substrate for flexible organic light emitting diodes (PC 기판위에 성막한 IZO/Ag/IZO 박막의 특성과 이를 이용하여 제작한 플렉시블 유기발광다이오드의 특성 분석)

  • Cho, Sung-Woo;Jeong, Jin-A;Bae, Jung-Hyeok;Moon, Jong-Min;Choi, Kwang-Hyuk;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.381-382
    • /
    • 2007
  • IZO/Ag/IZO (IAI) anode films for flexible organic light emitting diodes (OLEDs) were grown on PC (polycarbonate) substrate using DC sputter (IZO) and thermal evaporator (Ag) systems as a function of Ag thickness. To investigate electrical and optical properties of IAI stacked films, 4-point probe and UV/Vis spectrometer were used, respectively. From a IAI stacked film with 12nm-thick Ag, sheet resistance of $6.9\;{\Omega}/{\square}$ and transmittance of above 82 % at a range of 500-550 nm wavelength were obtained. In addition, structural and surface properties of IAI stacked films were analyzed by XRD (X-ray diffraction) and SEM (scanning electron microscopy), respectively. Moreover, IAI stacked films showed dramatically improved mechanical properties when subjected to bending both as a function of number of cycles to a fixed radius. Finally, OLEDs fabricated on both flexible IAI stacked anode and conventional ITO/Glass were fabricated and, J-V-L characteristics of those OLEDs were compared by Keithley 2400.

  • PDF

Level Set based Topological Shape Optimization of Phononic Crystals (음향결정 구조의 레벨셋 기반 위상 및 형상 최적설계)

  • Kim, Min-Geun;Hashimoto, Hiroshi;Abe, Kazuhisa;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.549-558
    • /
    • 2012
  • A topology optimization method for phononic crystals is developed for the design of sound barriers, using the level set approach. Given a frequency and an incident wave to the phononic crystals, an optimal shape of periodic inclusions is found by minimizing the norm of transmittance. In a sound field including scattering bodies, an acoustic wave can be refracted on the obstacle boundaries, which enables to control acoustic performance by taking the shape of inclusions as the design variables. In this research, we consider a layered structure which is composed of inclusions arranged periodically in horizontal direction while finite inclusions are distributed in vertical direction. Due to the periodicity of inclusions, a unit cell can be considered to analyze the wave propagation together with proper boundary conditions which are imposed on the left and right edges of the unit cell using the Bloch theorem. The boundary conditions for the lower and the upper boundaries of unit cell are described by impedance matrices, which represent the transmission of waves between the layered structure and the semi-infinite external media. A level set method is employed to describe the topology and the shape of inclusions. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set function, which facilitates to handle complicated topological shape changes. Through several numerical examples, the applicability of the proposed method is demonstrated.

Coating and Characterization of Al2O3-CoO Thin Films by the sol-gel Process (졸-겔법을 이용한 Al2O3-CoO계 박막의 제조와 특성에 관한 연구)

  • Shim, Moonsik;Lim, Yongmu
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.2
    • /
    • pp.123-128
    • /
    • 1999
  • This paper reports the preparation and characterization of colored coatings of $Al_2O_3$-CoO. Films of 25mol% CoO doped $Al_2O_3$, have been prepared on soda-lime-silica slide glasses by the sol-gel process from Al-alkoxide and Co-nitrate. The films have been characterized by a photospectroscopy and hardness tester. The color, spectral reflectance and spectral transmittance of the films was expressed in Lab color chart and on spectra plot. Microhardness of the films increased with increasing of the heating temperature. Transmittance and reflectance of the films decreased with increase of the heating temperature and coating times. The coating films showed various light-yellow, deep-yellow, greenish-yellow color as a function of the coating times and heating temperature.

  • PDF

A Study on he Optical and Electrical Properties of $In_2O_3-ZnO$ Thin Films Fabricated by Pulsed Laser Deposition (PLD 법으로 제작한 $In_2O_3-ZnO$ 박막의 광학적 및 전기적 특성)

  • Shin, Hyun-Ho;Han, Jung-Woo;Kang, Seong-Jun;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.32-36
    • /
    • 2008
  • In this study, $In_2O_3-ZnO$ thin films are prepared on quartz substrates by the pulsed laser deposition and their optical and electrical properties are investigated as the function of substrate temperatures ($200{\sim}600^{\circ}C$) at the fixed oxygen pressure of 200 mTorr. The XRD measurement shows that polycrystalline $In_2O_3-ZnO$ thin films are formed. In the XRD measurement, the intensity of the (400) $In_2O_3$ peak at $35.5^{\circ}$ decreases and that of the (222) $In_2O_3$ peak at $30.6^{\circ}$ increases with the increase substrate temperature up to $500^{\circ}C$. From the result of AFM measurement, the morphology of $In_2O_3-ZnO$ thin films are observed as round-type grains. The lowest surface roughness (6.15 nm) is obtained for the $In_2O_3-ZnO$ thin film fabricated at $500^{\circ}C$. The optical transmittance of $In_2O_3-ZnO$ thin films are higher than 82% in the visible region. The maximum carrier concentration of $2.46{\times}10^{20}cm^{-3}$ and the minimum resistivity of $1.36{\times}10^{-3}{\Omega}cm$ are obtained also for the $In_2O_3-ZnO$ thin film fabricated at $500^{\circ}C$.

Electrical and optical properties of Ag/ZnO multilayer thin film by the FTS (FTS법으로 제작한 Ag/ZnO 박막의 전기적, 광학적 특성)

  • Rim, Y.S.;Kim, S.M.;Son, I.H.;Lee, W.J.;Choi, M.K.;Kim, K.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.102-108
    • /
    • 2008
  • We have studied the properties of Ag/undoped ZnO (ZnO) multilayer thin films deposited on glass substrate by the facing targets sputtering method. In an attempt to find out the optimum conditions of the Ag thin film, which would be coated on the ZnO thin film, we investigated the changes of sheet resistance, transmittance and surface morphology as a function of deposition times and the substrate temperature. The electrical and optical characteristics of Ag/ZnO multilayers were evaluated by a four-point probe, a UV/VIS spectrometer with a spectral range of 390-770 nm, a X-ray Diffractometer (XRD), an atomic force microscope (AFM) and a Field Emission Scanning Electron Microscope (SEM), respectively. We were able to prepare the Ag/ZnO multilayer thin film with sheet resistance of 9.25 $\Omega/sq.$ and transmittance of over 80% at 550nm.