• 제목/요약/키워드: transmission gear

검색결과 555건 처리시간 0.027초

온간압입공정에서 자동차 변속기 단품(축/기어) 치형 변화 예측에 관한 연구 (A Study on the Prediction of Teeth Deformation of the Automobile Transmission Part(Shaft/Gear) in Warm Shrink Fitting Process)

  • 김호윤;최창진;배원병;김철
    • 한국정밀공학회지
    • /
    • 제23권9호
    • /
    • pp.54-60
    • /
    • 2006
  • Fitting process carried out in automobile transmission assembly line is classified into three classes; heat fitting, press fitting, and their combined fitting. Heat fitting is a method that heats gear to a suitable range under the tempering temperature and squeezes it toward the outer diameter of shaft. Its stress depends on the yield strength of gear. Press fitting is a method that generally squeezes gear toward that of shaft at room temperature by press. Another method heats warmly gear and safely squeezes it toward that of shaft. Warm shrink fitting process for automobile transmission part is now gradually increased, but the parts (shaft/gear) assembled by this process produced dimensional changes of gear profile in both radial and circumferential directions. So that it may cause noise and vibration between gears. In order to solve these problems, we need an analysis of warm shrink fitting process, in which design parameters are involved; contact pressure according to fitting interference between outer diameter of shaft and inner diameter of gear, fitting temperature, and profile tolerance of gear. In this study, an closed form equation to predict contact pressure and fitting load was proposed in order to develop optimization technique of warm shrink fitting process and verified its reliability through the experimental results measured in the field and FEM, that is, thermal-structural coupled field analysis. Actual loads measured in the field have a good agreement with the results obtained by theoretical and finite element analysis and also the expanded amounts of the gear profile in both radial and circumferential directions are within the limit tolerances used in the field.

헬리컬기어의 전달오차예측 비교에 관한 연구 (A Study on the Comparison of Transmission Error Prediction for a Helical Gear Pair)

  • 김래성;장기;최창;양용군;류성기
    • 한국기계가공학회지
    • /
    • 제14권2호
    • /
    • pp.14-18
    • /
    • 2015
  • In recent years, world is faced with a transportation energy dilemma, and the transportation is almost dependent on a single fuel - petroleum. However, Hybrid Electric Vehicle (HEV) technology holds more advantages to reduce the demand for petroleum in the transportation by efficiency improvements of petroleum consumption. Therefore, there is a trend that lower gear noise levels are demanded in HEV for drivers to avoid annoyance and fatigue during operation. And meshing transmission error (T.E.) is the excitation that leads to the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. In this paper, the analysis of gear tooth profile and lead modification is firstly presented, and then, the different transmission error of no mesh misalignment and mesh misalignment under one loaded torque for the 1st gear pair of HEV gearbox was investigated and compared. At last, the appropriate tooth modification was used to minimize and compare the transmission error of the gear pair with mesh misalignment under the loaded torque.

전기자동차용 2속 변속기의 경량 최적 설계 (Optimal Design of Lightweight Two-Speed Transmission of Electric Vehicles)

  • 최재훈;서준호;박노길
    • Tribology and Lubricants
    • /
    • 제36권2호
    • /
    • pp.96-104
    • /
    • 2020
  • The electric vehicle industry is rapidly developing because of enforced environmental regulations, and several studies have been conducted on the multispeed transmission to improve the fuel efficiency of electric vehicles. Among these studies, research on the power density improvement of electric vehicle transmission is critical. Thus, the optimal design of the gear train is necessary to enhance transmission efficiency. In this study, an optimal design methodology for the lightweight two-speed transmission of electric vehicles is proposed. Because a multispeed transmission has many operating conditions and equality and inequality constraints, a new gear design method that combines analytical and iterative methods is applied without using complex optimization algorithms. Sets of possible design variables are generated considering the operating conditions and various design variables. The modules and face width ratios of each stage gear that satisfy the corresponding operating conditions are analytically calculated. The volume of the gear train is calculated, evaluated, and arranged using these values to determine the optimal solution for minimizing the volume, and the proposed methodology is applied to the actual model to verify its effectiveness. The design of a two-speed transmission with multiple operating conditions and constraints without complicated optimization algorithms can be optimized.

전달오차를 이용한 물리기반(Physics-Based) 기어고장진단 이론연구 (Physics-based Diagnostics on Gear Faults Using Transmission Error)

  • 박정호;하종문;최주호;박성호;윤병동
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.505-508
    • /
    • 2014
  • Transmission error (TE) is defined as "the angular difference between the ideal output shaft position and actual position". As TE is one of the major source of the noise and vibration of gears, it is originally studied with relation of the noise and vibration of the gears. However, recently, with the relation of mesh stiffness, TE has been studied for fault detection of spur gear sets. This paper presents a physics-based theory on fault diagnostics of a planetary gear using transmission error. After constructing the lumped parameter model using DAFUL, multi-body dynamics software, we developed a methodology to diagnose the faults of the planetary gear including phase calculation, signal processing. Using developed methodology, we could conclude that TE could be a good signal for fault diagnostics of a planetary gear.

  • PDF

ZI 및 ZA형 웜기어의 치합전달오차 해석 (Transmission Error Analysis of ZI and ZA Profile Worm Gears)

  • 이태훈;서준호;박노길
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.325-331
    • /
    • 2018
  • Automobiles and systems requiring high gear ratios and high power densities generally use worm gears. In particular, as worm gears have a small volume and self-locking function, home appliances such as refrigerators and washers consist of worm gears. We can classify worm gears into cylindrical worms and rectangular worms. According to the AGMA standard, there are four types of cylindrical worms, ZA, ZN, ZK and ZI, depending on the machining of the worm shaft. It is preferable to use a ZI-type worm shaft, which is a combination of a worm wheel having an involute helical tooth surface and a conjugate tooth surface. However, in many cases, industries mostly use ZK, ZN, and ZA worm shafts because of the ease of processing. This paper presents numerical approaches to produce ZI and ZA worm surfaces and worm wheel. For the analysis of the transmission error of a worm gear system, this study (1) generates surface profile functions of ZI profile worm gear and worm shaft based on the common rack theory, (2) adopts the Newton-Raphson method for the analysis of the gear surface contact condition, and (3) presents and compares the corresponding transmission errors of ZI and ZA worm gears.

생산라인용 자동차 변속기용 헬리컬 기어 검사 장치에 관한 연구 (A Study on the Helical Gear Inspection System for Vehicle Transmission Gear Manufacturing Line)

  • 이민기;이응석;김기남;김광중
    • 대한기계학회논문집A
    • /
    • 제34권2호
    • /
    • pp.237-243
    • /
    • 2010
  • 본 논문은 자동차 변속기의 헬리컬기어 검사 장치에 대한 것이다. 기어 프로파일 전용 검사설비는 시간이 많이 소요되므로 생산라인용으로 적합하지 못하다. 본 논문에서 사용된 마스트기어를 이용하여 생산된 기어와 비교하여 방법은 보다 경제적이며 효율적이다. 본 논문에 사용된 3가지 기어검사 파라미터는 nick, 흔들림(run-out) 및 PCD (pitch circle diameter) 등이다. 기어검사장치의 측정정밀도에 영향을 미치는 요소들에 대해서도 또한 언급되었다. 이 장치는 현재 국내에서 전량 수입되는 기어 생산라인용 설비에 실제적으로 사용될 것이다.

수상 자전거의 동력전달장치 설계 (Design of Power Transmission System of a Water Bike)

  • 최정규;김형태
    • 대한조선학회논문집
    • /
    • 제50권3호
    • /
    • pp.153-159
    • /
    • 2013
  • The power transmission system has always been considered critical for a human powered boat(or water bike) since it first showed up at Human Powered Vessel Festival. Mechanical problems, such as abrasions and other damages of the gear system for the power transmission, lead to poor durability and low efficiency of a boat. This paper described mechanical problems and a design process of power transmission system and then suggested the method to solve the problems. It is selected a module and a type of gears that are structurally stable thus can transmit the power durable. Especially the lower gear box is applied to CRP(contra rotating propeller) system for improving the structural stability and the propeller efficiency as well. As the results, the upper and lower gear box are designed and manufactured. And from the trial test, it is confirmed that the power transmission system is reliable.

트랙터의 기관속도 및 변속비의 최적제어에 관한 연구(II) -최적운전 제어 시스템의 성능- (Automatic Control of Engine Speed and Transmission Ratio for Efficient Tractor Operations(II) -Performance of Optimal System-)

  • 강성봉;류관희;오길근
    • Journal of Biosystems Engineering
    • /
    • 제19권4호
    • /
    • pp.291-300
    • /
    • 1994
  • It is desired to operate tractor engines at or near maximum torque much of the time in field operation to increase fuel efficiency. To do this it is necessary to reduce engine speed and to shift gears to higher ratios as frequently as possible. Because of load variations in most drawbar work and inconvenience in gear shift, however, gear-type transmission are usually set in one ratio at unnecessarily high engine speeds, and engine-torque variations are used to compensate for changes in drawbar load. As a result, the most of time the tractor is not operated efficiently in terms of fuel consumption and work output. The objective of this study was to develop an automatic control system which is able to operate a tractor equipped with gear transmission under the optimal condition in terms of fuel efficiency with automatic governor setting and gear shift. An indoor experimental test set which can be used to simulate tractor operation, control engine speed and transmission ratio was developed in the previous paper. In this paper, the performance of the optimal operation system is reported. Through a series of tests, it was found that the automatic control system for optimal operation of tractors with gear transmission had a satisfactory performance.

  • PDF

정렬불량에 의한 기어 구동계 비선형 해석 (Nonlinear Analysis of Gear Drive System due to Misalignment)

  • 이봉현;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.31-36
    • /
    • 2002
  • Even through the problem of misalignment is of great importance, not much work has been reported in the literature on the effect of misalignment on the vibrations of the gear-bearing systems. Therefore, the nonlinear dynamic characteristics of the gear drive system due to misalignment are investigated in this work. Transmission error for helical gear and bearing nonlinear stiffness is calculated. The equation of motion of the gear drive system is modelled using the time-varying gear meshing stiffness, bearing nonlinear stiffness, and bearing pre-load due to the housing deformation. Numerical analysis lot the gear drive system show the result of misalignment effect - sub-harmonic component, bearing pre-load effect, and another nonlinear phenomenon. And the numerical analysis are verified by the experimental result.

  • PDF

G.U.I. 프로그램을 이용한 기어 시스템의 동적 해석 (Dynamic Analysis of Gear System Using G.U.I. Program)

  • 박왕준;윤구영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.857-860
    • /
    • 1996
  • The area of gear dynamics has recently been the focus of many studies. A new tooth profile modification was proposed by author for reducing vibration and noise of involute gears. A comparative dynamic analysis of the gear drive with the involute tooth and the modified tooth profile(using cubic splines) is performed to the unuformal transmission error reduces the gear vibration and noise due to less dynamic tooth load variation during the meshing cycle. This work also include a gear design process by the meaning of a practical approach, such as Win95 based simulation program with all using basic geardesign variables. Especially this program enables gear designers to dynamic analysis based on G.U.I.

  • PDF