• 제목/요약/키워드: translation regulation

검색결과 123건 처리시간 0.027초

Transfer RNA-Derived Small Non-Coding RNA: Dual Regulator of Protein Synthesis

  • Kim, Hak Kyun
    • Molecules and Cells
    • /
    • 제42권10호
    • /
    • pp.687-692
    • /
    • 2019
  • Transfer RNA-derived small RNAs (tsRNAs) play a role in various cellular processes. Accumulating evidence has revealed that tsRNAs are deeply implicated in human diseases, such as various cancers and neurological disorders, suggesting that tsRNAs should be investigated to develop novel therapeutic intervention. tsRNAs provide more complexity to the physiological role of transfer RNAs by repressing or activating protein synthesis with distinct mechanisms. Here, we highlight the detailed mechanism of tsRNA-mediated dual regulation in protein synthesis and discuss the necessity of novel sequencing technology to learn more about tsRNAs.

miR-421, miR-155 and miR-650: Emerging Trends of Regulation of Cancer and Apoptosis

  • Farooqi, Ammad Ahmad;Qureshi, Muhammad Zahid;Coskunpinar, Ender;Naqvi, Syed Kamran-Ul-Hassan;Yaylim, Ilhan;Ismail, Muhammad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.1909-1912
    • /
    • 2014
  • It is becoming progressively more understandable that between transcription and translation there lies another versatile regulator that quantitatively controls the expression of mRNAs. Identification of miRNAs as key regulators of wide ranging signaling cascades and modulators of different cell-type and context dependent activities attracted basic and clinical scientists to study modes and mechanisms in details. In line with this approach overwhelmingly increasing in vivo and in vitro studies are deepening our understanding regarding miR-421, mir-155 and miR-650 mediated regulation of cellular activities. We also attempt to provide an overview of long non coding RNAs.

Techniques for investigating mitochondrial gene expression

  • Park, Dongkeun;Lee, Soyeon;Min, Kyung-Tai
    • BMB Reports
    • /
    • 제53권1호
    • /
    • pp.3-9
    • /
    • 2020
  • The mitochondrial genome encodes 13 proteins that are components of the oxidative phosphorylation system (OXPHOS), suggesting that precise regulation of these genes is crucial for maintaining OXPHOS functions, including ATP production, calcium buffering, cell signaling, ROS production, and apoptosis. Furthermore, heteroplasmy or mis-regulation of gene expression in mitochondria frequently is associated with human mitochondrial diseases. Thus, various approaches have been developed to investigate the roles of genes encoded by the mitochondrial genome. In this review, we will discuss a wide range of techniques available for investigating the mitochondrial genome, mitochondrial transcription, and mitochondrial translation, which provide a useful guide to understanding mitochondrial gene expression.

Comparative Transcriptomic Analysis of MAPK-Mediated Regulation of Sectorization in Cryphonectria parasitica

  • Chun, Jeesun;So, Kum-Kang;Ko, Yo-Han;Kim, Jung-Mi;Kim, Dae-Hyuk
    • Molecules and Cells
    • /
    • 제42권4호
    • /
    • pp.363-375
    • /
    • 2019
  • Fungal sectorization is a complex trait that is still not fully understood. The unique phenotypic changes in sporadic sectorization in mutants of CpBck1, a mitogen-activated protein kinase kinase kinase (MAPKKK) gene, and CpSlt2, a mitogen-activated protein kinase (MAPK) gene, in the cell wall integrity pathway of the chestnut blight fungus Cryphonectria parasitica have been previously studied. Although several environmental and physiological factors cause this sectoring phenotype, genetic variants can also impact this complex morphogenesis. Therefore, RNA sequencing analysis was employed to identify candidate genes associated with sectorization traits and understand the genetic mechanism of this phenotype. Transcriptomic analysis of CpBck1 and CpSlt2 mutants and their sectored progeny strains revealed a number of differentially expressed genes (DEGs) related to various cellular processes. Approximately 70% of DEGs were common between the wild-type and each of CpBck1 and CpSlt2 mutants, indicating that CpBck1 and CpSlt2 are components of the same MAPK pathway, but each component governs specific sets of genes. Functional description of the DEGs between the parental mutants and their sectored progenies revealed several key pathways, including the biosynthesis of secondary metabolites, translation, amino acid metabolism, and carbohydrate metabolism; among these, pathways for secondary metabolism and translation appeared to be the most common pathway. The results of this comparative study provide a better understanding of the genetic regulation of sector formation and suggest that complex several regulatory pathways result in interplays between secondary metabolites and morphogenesis.

Effect of Orally Administered Branched-chain Amino Acids on Protein Synthesis and Degradation in Rat Skeletal Muscle

  • Yoshizawa, Fumiaki;Nagasawa, Takashi;Sugahara, Kunio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권1호
    • /
    • pp.133-140
    • /
    • 2005
  • Although amino acids are substrates for the synthesis of proteins and nitrogen-containing compounds, it has become more and more clear over the years that these nutrients are also extremely important as regulators of body protein turnover. The branched-chain amino acids (BCAAs) together or simply leucine alone stimulate protein synthesis and inhibit protein breakdown in skeletal muscle. However, it was only recently that the mechanism(s) involved in the regulation of protein turnover by BCAAs has begun to be defined. The acceleration of protein synthesis by these amino acids seems to occur at the level of peptide chain initiation. Oral administration of leucine to food-deprived rats enhances muscle protein synthesis, in part, through activation of the mRNA binding step of translation initiation. Despite our knowledge of the induction of protein synthesis by BCAAs, there are few studies on the suppression of protein degradation. The recent findings that oral administration of leucine rapidly reduced $N^{\tau}$-methylhistidine (3-methylhistidine; MeHis) release from isolated muscle, an index of myofibrillar protein degradation, indicate that leucine suppresses myofiblilar protein degradation. The details of the molecular mechanism by which leucine inhibits proteolysis is just beginning to be elucidated. The purpose of this report was to review the current understanding of how BCAAs act as regulators of protein turnover.

Nonlinear Dynamic Model of Escherichia coli Thiamine Pyrophosphate Riboswitch

  • Loong, Stanley NG Kwang;MISHRA, Santosh K.
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.421-426
    • /
    • 2005
  • In this paper, we investigate the nonlinear dynamic behavior of TPP (thiamine pyrophosphate) riboswitches in E. coli (Escherichia coli). TPP riboswitches are highly conserved RNA regulatory elements, embedded within the 5’'untranslated region of three TPP biosynthesis operons. The three operons thiCEFSGH, thiMD, and thiBPQ are involved in the biosynthesis, salvage, and transport of TPP, respectively. TPP riboswitches modulate their expressions in response to changing TPP concentration, without involving protein cofactors. Interestingly, the expression of thiMD is regulated at the translational level, while that of thiCEFSGH at both levels of transcription and translation. We develop a mathematical model of the TPP riboswitch’s regulatory system possessed by thiCEFSGH and thiMD, so as to simulate the time-course experiments of TPP biosynthesis in E. coli. The simulation results are validated against three sets of reported experimental data in order to gain insight into the nature of steady states and the stability of TPP riboswitches, and to explain the biological significance of regulating at level of transcription or translation, or even both. Our findings suggest that in the TPP biosynthesis pathway of E. coli, the biological effect of down-regulating thiCEFSGH operon at the translational level by TPP riboswitch is less prominent than that at the transcriptional level.

  • PDF

Secondary structure of the Irf7 5'-UTR, analyzed using SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension)

  • Kim, Yun-Mi;Choi, Won-Young;Oh, Chang-Mok;Han, Gyoon-Hee;Kim, Young-Joon
    • BMB Reports
    • /
    • 제47권10호
    • /
    • pp.558-562
    • /
    • 2014
  • OASL1 is a member of the 2'-5'-oligoadenylate synthetase (OAS) family and promotes viral clearance by activating RNase L. OASL1 interacts with the 5'-untranslated region (UTR) of interferon regulatory factor 7 (Irf7) and inhibits its translation. To identify the secondary structure required for OASL1 binding, we examined the 5'-UTR of the Irf7 transcript using "selective 2'-hydroxyl acylation analyzed by primer extension" (SHAPE). SHAPE takes advantage of the selective acylation of residues in single-stranded regions by 1-methyl-7-nitroisatoic anhydride (1M7). We found five major acylation sites located in, or next to, predicted single-stranded regions of the Irf7 5'-UTR. These results demonstrate the involvement of the stem structure of the Irf7 5'-UTR in the regulation of Irf7 translation, mediated by OASL1.

모바일 기반의 웹접근성 평가 및 자동변환 시스템 (Mobile Web-Access Evaluation and Automatic Translation System)

  • 김승천;황호영;노광현
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권4호
    • /
    • pp.195-200
    • /
    • 2012
  • 본 논문에서는 현대 모든 인터넷의 기본적 정보제공 수단인 웹페이지에 대한 접근성(Accessibility)에 대한 소개와 이를 제대로 수행하고 있는지에 대한 평가를 가능하도록 하는 수단으로서의 솔루션 개발에 대해서 소개한다. 기본적으로 웹접근성을 평가하기 위해서는 웹페이지를 기본 단위 오브젝트로 구분하는 작업이 이뤄져야 한다. 이후 여러 가지 평가기준에 근거하여 이를 평가하게 된다. 또한 본 논문에서는 이러한 오브젝트 분류에 근거하여 오브젝트별로 변환이 가능한 모바일용 웹접근성 기반 변환 시스템을 소개한다.

골격근세포에서 구리에 의한 마이오카인 apelin의 발현 (Copper Regulates Apelin Expression in L6 Skeletal Muscle Cells)

  • 권기상;박진솔;최영은;이은령;유재은;박혜원;권오유
    • 생명과학회지
    • /
    • 제33권9호
    • /
    • pp.724-729
    • /
    • 2023
  • 본의 연구 결과는 무기질 구리가 전사, 번역 및 번역 후의 여러 단계에서 아펠린 생합성에 억제 효과를 발휘한다는 것을 명확하게 보여준다. 그러나 바토쿠프로인디설폰산의 구리 킬레이터로 처리하면 구리의 억제 영향이 효과적으로 역전되어 포유류 골격근 세포에서 아펠린 생합성의 구리 의존적 특성이 확인되었다. 이러한 결과는 구리가 마이오카인 아펠린의 생합성 조절에 중요한 역할을 한다는 최초의 보고이며, 구리 관련한 근육감소증의 예방 및 치료의 전략 개발에 유용한 실마리를 제공할 수 있다.