DOI QR코드

DOI QR Code

Transfer RNA-Derived Small Non-Coding RNA: Dual Regulator of Protein Synthesis

  • Received : 2019.09.23
  • Accepted : 2019.10.15
  • Published : 2019.10.31

Abstract

Transfer RNA-derived small RNAs (tsRNAs) play a role in various cellular processes. Accumulating evidence has revealed that tsRNAs are deeply implicated in human diseases, such as various cancers and neurological disorders, suggesting that tsRNAs should be investigated to develop novel therapeutic intervention. tsRNAs provide more complexity to the physiological role of transfer RNAs by repressing or activating protein synthesis with distinct mechanisms. Here, we highlight the detailed mechanism of tsRNA-mediated dual regulation in protein synthesis and discuss the necessity of novel sequencing technology to learn more about tsRNAs.

Keywords

References

  1. Anderson, P. and Kedersha, N. (2008). Stress granules: the Tao of RNA triage. Trends Biochem. Sci. 33, 141-150. https://doi.org/10.1016/j.tibs.2007.12.003
  2. Cozen, A.E., Quartley, E., Holmes, A.D., Hrabeta-Robinson, E., Phizicky, E.M., and Lowe, T.M. (2015). ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat. Methods 12, 879-884. https://doi.org/10.1038/nmeth.3508
  3. Dang, Y., Kedersha, N., Low, W.K., Romo, D., Gorospe, M., Kaufman, R., Anderson, P., and Liu, J.O. (2006). Eukaryotic initiation factor 2alpha-independent pathway of stress granule induction by the natural product pateamine A. J. Biol. Chem. 281, 32870-32878. https://doi.org/10.1074/jbc.M606149200
  4. Elkordy, A., Mishima, E., Niizuma, K., Akiyama, Y., Fujimura, M., Tominaga, T., and Abe, T. (2018). Stress-induced tRNA cleavage and tiRNA generation in rat neuronal PC12 cells. J. Neurochem. 146, 560-569. https://doi.org/10.1111/jnc.14321
  5. Emara, M.M., Ivanov, P., Hickman, T., Dawra, N., Tisdale, S., Kedersha, N., Hu, G.F., and Anderson, P. (2010). Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J. Biol. Chem. 285, 10959-10968. https://doi.org/10.1074/jbc.M109.077560
  6. Evdokimova, V., Ruzanov, P., Imataka, H., Raught, B., Svitkin, Y., Ovchinnikov, L.P., and Sonenberg, N. (2001). The major mRNA-associated protein YB-1 is a potent 5' cap-dependent mRNA stabilizer. EMBO J. 20, 5491-5502. https://doi.org/10.1093/emboj/20.19.5491
  7. Farny, N.G., Kedersha, N.L., and Silver, P.A. (2009). Metazoan stress granule assembly is mediated by P-eIF2alpha-dependent and -independent mechanisms. RNA 15, 1814-1821. https://doi.org/10.1261/rna.1684009
  8. Fricker, R., Brogli, R., Luidalepp, H., Wyss, L., Fasnacht, M., Joss, O., Zywicki, M., Helm, M., Schneider, A., Cristodero, M., et al. (2019). A tRNA half modulates translation as stress response in Trypanosoma brucei. Nat. Commun. 10, 118. https://doi.org/10.1038/s41467-018-07949-6
  9. Fu, H., Feng, J., Liu, Q., Sun, F., Tie, Y., Zhu, J., Xing, R., Sun, Z., and Zheng, X. (2009). Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett. 583, 437-442. https://doi.org/10.1016/j.febslet.2008.12.043
  10. Gebetsberger, J., Wyss, L., Mleczko, A.M., Reuther, J., and Polacek, N. (2017). A tRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress. RNA Biol. 14, 1364-1373. https://doi.org/10.1080/15476286.2016.1257470
  11. Gebetsberger, J., Zywicki, M., Kunzi, A., and Polacek, N. (2012). tRNAderived fragments target the ribosome and function as regulatory non-coding RNA in haloferax volcanii. Archaea 2012, 260909.
  12. Goodarzi, H., Liu, X., Nguyen, H.C.B., Zhang, S., Fish, L., and Tavazoie, S.F. (2015). Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 161, 790-802. https://doi.org/10.1016/j.cell.2015.02.053
  13. Gupta, N., Singh, A., Zahra, S., and Kumar, S. (2018). PtRFdb: a database for plant transfer RNA-derived fragments. Database (Oxford) 2018, 1-8. https://doi.org/10.1093/database/bay092
  14. Guzzi, N., Ciesla, M., Ngoc, P.C.T., Lang, S., Arora, S., Dimitriou, M., Pimkova, K., Sommarin, M.N.E., Munita, R., Lubas, M., et al. (2018). Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell 173, 1204-1216. https://doi.org/10.1016/j.cell.2018.03.008
  15. Haiser, H.J., Karginov, F.V., Hannon, G.J., and Elliot, M.A. (2008). Developmentally regulated cleavage of tRNAs in the bacterium Streptomyces coelicolor. Nucleic Acids Res. 36, 732-741. https://doi.org/10.1093/nar/gkm1096
  16. Haussecker, D., Huang, Y., Lau, A., Parameswaran, P., Fire, A.Z., and Kay, M.A. (2010). Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16, 673-695. https://doi.org/10.1261/rna.2000810
  17. Ivanov, P., Emara, M.M., Villen, J., Gygi, S.P., and Anderson, P. (2011). Angiogenin-induced tRNA fragments inhibit translation initiation. Mol. Cell 43, 613-623. https://doi.org/10.1016/j.molcel.2011.06.022
  18. Ivanov, P., O'Day, E., Emara, M.M., Wagner, G., Lieberman, J., and Anderson, P. (2014). G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc. Natl. Acad. Sci. U. S. A. 111, 18201-18206. https://doi.org/10.1073/pnas.1407361111
  19. Jochl, C., Rederstorff, M., Hertel, J., Stadler, P.F., Hofacker, I.L., Schrettl, M., Haas, H., and Huttenhofer, A. (2008). Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests a novel mechanism for regulation of protein synthesis. Nucleic Acids Res. 36, 2677-2689. https://doi.org/10.1093/nar/gkn123
  20. Keam, S.P., Sobala, A., Ten Have, S., and Hutvagner, G. (2017). tRNA-derived RNA fragments associate with human multisynthetase complex (MSC) and modulate ribosomal protein translation. J. Proteome Res. 16, 413-420. https://doi.org/10.1021/acs.jproteome.6b00267
  21. Kim, H.K., Fuchs, G., Wang, S., Wei, W., Zhang, Y., Park, H., Roy-Chaudhuri, B., Li, P., Xu, J., Chu, K., et al. (2017). A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature 552, 57-62. https://doi.org/10.1038/nature25005
  22. Kumar, P., Anaya, J., Mudunuri, S.B., and Dutta, A. (2014a). Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol. 12, 78. https://doi.org/10.1186/s12915-014-0078-0
  23. Kumar, P., Kuscu, C., and Dutta, A. (2016). Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem. Sci. 41, 679-689. https://doi.org/10.1016/j.tibs.2016.05.004
  24. Kumar, P., Mudunuri, S.B., Anaya, J., and Dutta, A. (2014b). tRFdb: a database for transfer RNA fragments. Nucleic Acids Res. 43, D141-D145. https://doi.org/10.1093/nar/gku1138
  25. Lee, S.R. and Collins, K. (2005). Starvation-induced cleavage of the tRNA anticodon loop in Tetrahymena thermophila. J. Biol. Chem. 280, 42744-42749. https://doi.org/10.1074/jbc.M510356200
  26. Lee, Y.S., Shibata, Y., Malhotra, A., and Dutta, A. (2009). A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev. 23, 2639-2649. https://doi.org/10.1101/gad.1837609
  27. Levitz, R., Chapman, D., Amitsur, M., Green, R., Snyder, L., and Kaufmann, G. (1990). The optional E. coli prr locus encodes a latent form of phage T4-induced anticodon nuclease. EMBO J. 9, 1383-1389. https://doi.org/10.1002/j.1460-2075.1990.tb08253.x
  28. Luo, S., He, F., Luo, J., Dou, S., Wang, Y., Guo, A., and Lu, J. (2018). Drosophila tsRNAs preferentially suppress general translation machinery via antisense pairing and participate in cellular starvation response. Nucleic Acids Res. 46, 5250-5268. https://doi.org/10.1093/nar/gky189
  29. Lyons, S.M., Achorn, C., Kedersha, N.L., Anderson, P.J., and Ivanov, P. (2016). YB-1 regulates tiRNA-induced Stress Granule formation but not translational repression. Nucleic Acids Res. 44, 6949-6960. https://doi.org/10.1093/nar/gkw418
  30. Lyons, S.M., Gudanis, D., Coyne, S.M., Gdaniec, Z., and Ivanov, P. (2017). Identification of functional tetramolecular RNA G-quadruplexes derived from transfer RNAs. Nat. Commun. 8, 1127. https://doi.org/10.1038/s41467-017-01278-w
  31. Mleczko, A.M., Celichowski, P., and Bakowska-Zywicka, K. (2018). Transfer RNA-derived fragments target and regulate ribosome-associated aminoacyl-transfer RNA synthetases. Biochim. Biophys. Acta Gene Regul. Mech. 1861, 647-656. https://doi.org/10.1016/j.bbagrm.2018.06.001
  32. Nekrasov, M.P., Ivshina, M.P., Chernov, K.G., Kovrigina, E.A., Evdokimova, V.M., Thomas, A.A.M., Hershey, J.W.B., and Ovchinnikov, L.P. (2003). The mRNA-binding protein YB-1 (p50) prevents association of the eukaryotic initiation factor eIF4G with mRNA and inhibits protein synthesis at the initiation stage. J. Biol. Chem. 278, 13936-13943. https://doi.org/10.1074/jbc.M209145200
  33. Panas, M.D., Ivanov, P., and Anderson, P. (2016). Mechanistic insights into mammalian stress granule dynamics. J. Cell Biol. 215, 313-323. https://doi.org/10.1083/jcb.201609081
  34. Phizicky, E.M. and Hopper, A.K. (2010). tRNA biology charges to the front. Genes Dev. 24, 1832-1860. https://doi.org/10.1101/gad.1956510
  35. Pliatsika, V., Loher, P., Magee, R., Telonis, A.G., Londin, E., Shigematsu, M., Kirino, Y., and Rigoutsos, I. (2018). MINTbase v2.0: a comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all The Cancer Genome Atlas projects. Nucleic Acids Res. 46, D152-D159. https://doi.org/10.1093/nar/gkx1075
  36. Robledo, S., Idol, R.A., Crimmins, D.L., Ladenson, J.H., Mason, P.J., and Bessler, M. (2008). The role of human ribosomal proteins in the maturation of rRNA and ribosome production. RNA 14, 1918-1929. https://doi.org/10.1261/rna.1132008
  37. Schimmel, P. (2017). The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis. Nat. Rev. Mol. Cell Biol. 19, 45-58. https://doi.org/10.1038/nrm.2017.77
  38. Telonis, A.G., Loher, P., Honda, S., Jing, Y., Palazzo, J., Kirino, Y., and Rigoutsos, I. (2015). Dissecting tRNA-derived fragment complexities using personalized transcriptomes reveals novel fragment classes and unexpected dependencies. Oncotarget 6, 24797-24822. https://doi.org/10.18632/oncotarget.4695
  39. Thompson, D.M., Lu, C., Green, P.J., and Parker, R. (2008). tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 14, 2095-2103. https://doi.org/10.1261/rna.1232808
  40. Yamasaki, S., Ivanov, P., Hu, G.F., and Anderson, P. (2009). Angiogenin cleaves tRNA and promotes stress-induced translational repression. J. Cell Biol. 185, 35-42. https://doi.org/10.1083/jcb.200811106
  41. Zhang, S., Sun, L., and Kragler, F. (2009). The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation. Plant Physiol. 150, 378-387. https://doi.org/10.1104/pp.108.134767
  42. Zheng, G., Qin, Y., Clark, W.C., Dai, Q., Yi, C., He, C., Lambowitz, A.M., and Pan, T. (2015). Efficient and quantitative high-throughput tRNA sequencing. Nat. Methods 12, 835-837. https://doi.org/10.1038/nmeth.3478
  43. Zheng, L.L., Xu, W.L., Liu, S., Sun, W.J., Li, J.H., Wu, J., Yang, J.H., and Qu, L.H. (2016). tRF2Cancer: A web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers. Nucleic Acids Res. 44, W185-W193. https://doi.org/10.1093/nar/gkw414

Cited by

  1. Small RNA Sequencing Reveals Transfer RNA-derived Small RNA Expression Profiles in Retinal Neovascularization vol.17, pp.12, 2020, https://doi.org/10.7150/ijms.46209
  2. Novel Links between TORC1 and Traditional Non-Coding RNA, tRNA vol.11, pp.9, 2019, https://doi.org/10.3390/genes11090956
  3. Non-Coding RNAs as Cancer Hallmarks in Chronic Lymphocytic Leukemia vol.21, pp.18, 2019, https://doi.org/10.3390/ijms21186720
  4. Elucidating the Role of Serum tRF-31-U5YKFN8DYDZDD as a Novel Diagnostic Biomarker in Gastric Cancer (GC) vol.11, 2019, https://doi.org/10.3389/fonc.2021.723753
  5. Research progress on the tsRNA classification, function, and application in gynecological malignant tumors vol.7, pp.1, 2019, https://doi.org/10.1038/s41420-021-00789-2
  6. Dnmt2-null sperm block maternal transmission of a paramutant phenotype† vol.105, pp.3, 2021, https://doi.org/10.1093/biolre/ioab086
  7. Regulatory roles of tRNA-derived RNA fragments in human pathophysiology vol.26, 2019, https://doi.org/10.1016/j.omtn.2021.06.023
  8. Multiple targets identified with genome wide profiling of small RNA and mRNA expression are linked to fracture healing in mice vol.15, 2019, https://doi.org/10.1016/j.bonr.2021.101115
  9. Deciphering the tRNA-derived small RNAs: origin, development, and future vol.13, pp.1, 2019, https://doi.org/10.1038/s41419-021-04472-3