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The mitochondrial genome encodes 13 proteins that are 
components of the oxidative phosphorylation system (OXPHOS), 
suggesting that precise regulation of these genes is crucial for 
maintaining OXPHOS functions, including ATP production, 
calcium buffering, cell signaling, ROS production, and 
apoptosis. Furthermore, heteroplasmy or mis-regulation of 
gene expression in mitochondria frequently is associated with 
human mitochondrial diseases. Thus, various approaches have 
been developed to investigate the roles of genes encoded by 
the mitochondrial genome. In this review, we will discuss a 
wide range of techniques available for investigating the 
mitochondrial genome, mitochondrial transcription, and 
mitochondrial translation, which provide a useful guide to 
understanding mitochondrial gene expression. [BMB Reports 
2020; 53(1): 3-9]

INTRODUCTION

Mitochondria in mammals have their own genome, which 
encodes 2 mitochondrial rRNAs (mt-rRNAs), 22 mitochondrial 
tRNAs (mt-tRNAs), and 13 proteins in the oxidative phosphory-
lation system (OXPHOS) (1, 2). Each heavy- and light-strand 
mitochondrial DNA (mt-DNA) is transcribed to polycistronic 
transcripts followed by sequential maturation in the 
mitochondrial RNA granule (3). There are 11 mRNAs with 13 
reading frames that are then translated by mitochondrial 
ribosomes. These proteins make up components of OXPHOS, 
which are composed of nuclear-encoded and mitochondria- 
encoded subunits (4). Thus, proper assembly of OXPHOS 
requires precise coordination of mitochondrial and cytoplasmic 
translation; however, mechanisms underlying their communi-
cation are not well understood. 

There are several unique features of mitochondria that need 

to be considered for investigating gene expression in 
mitochondria. First, since a mitochondrion is an individually 
compartmentalized organelle, a method that engineers RNAs 
or proteins to be transported into mitochondrion is necessary. 
Importing proteins into mitochondria has been achieved by 
inserting a mitochondrial targeting sequence (MTS) into 
desired proteins (5, 6). However, targeting RNA into mito-
chondria is still challenging because of our poor understanding 
of the RNA delivery mechanism; hence small RNA-mediated 
knockdown or chimeric mRNA-based tools have limited 
success. Second, a mitochondrion is a highly dynamic 
organelle that constantly undergoes fusion and fission and 
changes position (7, 8). Therefore, imaging analysis of 
mitochondria dynamics still requires more sophisticated tools. 
Third, mitochondria have independent gene expression 
machinery (9, 10). The mitochondrial ribosome consists of 28S 
and 39S subunits, and thus is smaller than cytoplasmic 
ribosome, which contains 40S and 60S subunits (11), 
indicating that factors involved in mitochondrial translation are 
different from those for cytoplasm translation. 

Mitochondrial gene expression changes according to 
cellular environments (10), suggesting that mitochondrial 
translation is regulated by cellular activity to maintain cellular 
homeostasis or to meet cellular demands. Thus, it is desirable 
to examine mitochondrial translation in various types of cells. 
Here, we review biochemical and imaging tools that are 
available for studying mitochondrial DNAs, mitochondrial 
RNAs, and mitochondrial gene expression. 

MITOCHONDRIAL DNA 

A mitochondrion contains 2 to 10 copies of mitochondrial 
DNA (mt-DNA), which is a 16.5 KB circular structure 
containing a D-loop (12). The total number of mitochondrial 
DNAs in a single cell is usually about 103 to 104 (13), but 
fertilized cells or cells with diseases, such as cancer, 
cardiovascular diseases, and neurological disorders, have 
altered mt-DNA copy numbers (14-17). Quantification of an 
mt-DNA copy number is a simple experiment, which involves 
DNA extraction and quantitative PCR (13). However, how 
different mt-DNA copy numbers alter cellular phenotypes is 
not fully understood. Furthermore, whether the number of 
mt-DNA copy numbers directly affects the mechanism of 
mitochondrial transcription and translation is not clear. 
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Fig. 1. An overview of biochemical and imaging tools for investigating mitochondrial gene expression. Mitochondrial DNA (A) mt-ZFN and 
mt-TALEN use a zinc-finger DNA-binding domain and transcription activator-like elements, respectively, and each links to a DNA-cleavage 
domain of the restriction enzyme, Fok1. (B) EtBr or SyBr binds to double-stranded mt-DNA, whereas BrdU and EdU can incorporate into 
mt-DNA during mt-DNA replication, which allows intact mt-DNA to be visualized in live cells. (C) An mt-DNA specific sequence can be 
detected by using a FISH probe. (D) GFP-tagged TFAM is also used to visualize mt-DNA in live cells. Mitochondrial RNA (E) Three 
possible mechanisms of RNA transport into mitochondrial matrix are suggested: (1) PNPASE transports RNA of RNase P, RNAs of 
mitochondrial ribosomal proteins, and 5S rRNAs by recognizing the stem-loop structure of their RNAs; (2) miRNA can be delivered to 
mitochondria by Ago2; (3) PNPASE also translocates pre-miRNA into mitochondria. (F) RNA recognition motif domains of human 
PUMILIO1 are tagged with split fragments of EGFP. When the two split EGFPs are reassembled by binding to ND6 mRNA, EGFP signals 
appear and the dynamics of ND6 mRNA can be visualized. Mitochondrial protein (G) Mitochondria-specific metabolic labeling can be 
achieved by using isotope or non-canonical amino acids while inhibiting cytoplasmic translation. Isotope-labeled mitochondrial proteins are 
separated by SDS-PAGE. Azide-conjugated non-canonical amino acids are detected by biotin or a fluorescent dye through click reaction. 

Editing the mitochondrial genome 
For mitochondrial genome editing, restriction endonucleases 
that recognize a mutated mitochondrial DNA sequence have 
been successfully targeted to mitochondria by the insertion of 
the MTS (18). Once inside the mitochondria, restriction 
endonucleases remove only mutated mitochondrial DNA from 
mitochondrial heteroplasmy. However, since mutated sequences 
that can be recognized by restriction endonucleases are rare, 
the use of this method is limited. Other genome editing 
techniques, such as zinc-finger nucleases (ZFNs) (19), 
transcription activator-like effector nuclease (TALENs) (20), and 
clustered regularly interspaced short palindromic repeats/CRISPR- 
associated protein 9 (CRISPR/Cas9) system (21), have been 
developed to replace mutated genes found in human diseases 
(22). Accordingly, mitochondrial DNA editing tools have been 
developed by delivering the respective editing machinery to 
mitochondria (Fig. 1A): mt-ZFN (23, 24), mt-TALENs (25), and 
mt-CRISPR/Cas9 system (26). ZFN is a synthetic nuclease 

constructed by adding a zinc-finger DNA-binding domain to a 
DNA-cleavage domain of a restriction enzyme, Fok1, which 
can recognize three nucleotides (19), and mt-ZFN contains 
both MTS and a nuclear export sequence that efficiently 
localizes mt-ZFN in mitochondria (23, 27). Studies have 
shown that mt-ZFN selectively removes mt-DNA containing a 
large deletion that causes human mitochondrial diseases, as 
well as restored biochemical defects in models of mitochondrial 
diseases (27). It also reduced heteroplasmy by eliminating 
mutant mt-DNA, which rescued defects in a cardiac disease 
mouse model (28). 

On the other hand, TALEN is based on transcription 
activator-like elements, which can recognize a single 
nucleotide instead of the triplet nucleotides recognized by 
ZFN. In the same way, transcription activator-like elements are 
conjugated with nuclease, Fok1, and are imported into 
mitochondria by adding an MTS and UTR sequence from 
ATP5B and SOD2. Mt-TALEN has been used to cleave 
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mutated mt-DNAs found in Leber’s hereditary optic neuropathy 
(LHON), dystonia, myoclonic epilepsy with ragged red fibers, 
and MELAS/Leigh syndrome in osteosarcoma cells (25, 29). 
Since the mt-ZFN and mt-TALEN editing systems require 
different types of DNA-binding proteins to remove various 
mutated mt-DNAs, it is still challenging to obtain the right 
combination of zinc-finger proteins or transcription activator- 
like effectors that correspond to each nucleotide. 

The mt-CRISPR using mitochondria-targeted Cas9 and guide 
RNA (gRNA) has also been used to manipulate the 
mitochondrial genome (26). However, it is still controversial 
whether gRNA is properly translocated into mitochondria, 
since RNAs are difficult to import into mitochondria without 
specific sequences that form a stem loop structure. 
Nonetheless, if the CRISPR/Cas9 system efficiently works in 
mitochondria, it would be a useful tool for adding or deleting 
specific sequences. 

Another method for manipulating mt-DNA is by applying a 
mitochondrial targeted adeno-associated virus. A modified 
virus capsid protein VP2 containing wild-type ND4 was 
delivered into mitochondria having a mutation in ND4 and 
successfully rescued the defective phenotypes shown in a 
cell-culture model of LHON (30). However, a mitochondria- 
targeted adeno-associated virus has a size limit of ∼5 kb, 
which restricts its use in treating mitochondrial genome 
mutations. Although current editing tools still have limitations, 
improved genome-editing machinery in the future will surely 
be successful at treating mitochondrial diseases caused by 
mutations in the mitochondrial genome. 

Visualization of mitochondrial DNA
The location of mt-DNA provides clues to how mitochondrial 
gene expression is regulated during different conditions (31, 
32). Endogenous mitochondrial DNA in the intact cell can be 
visualized by incorporating ethidium bromide (EtBr), SYBR 
dye, and thymine analogues, such as bromodeoxyuridine 
(BrdU) or 5-ethynyl-2’-deoxyuridine (EdU), to DNA (Fig. 1B) 
(33-38). EtBr staining is a general method used to visualize 
DNA. However, EtBr enlarges mitochondrial nucleoids and 
inhibits mt-DNA replication (39), which makes EtBr usage 
more suitable for other purposes. For example, EtBr has been 
used to deplete mt-DNA and to investigate the effects of 
reduced mt-DNA on mitochondrial functions (40). SYBR dye 
labels mitochondrial nucleoids without affecting cell viability, 
and thus can also be used to establish time-lapse images (34, 
35). Both BrdU and Edu detect nascent mt-DNA generated by 
mitochondrial-genome replication (36-38). However, BrdU 
incorporation requires a stringent DNA denaturation step, 
which renders low reproducibility (35). Thus, quantification 
analysis using BrdU incorporation becomes less reliable. On 
the other hand, Edu incorporation does not require the 
denaturation step, but is less sensitive than is BrdU (35). 
Hence, a combination of BrdU and Edu incorporation has 
been used to label nascent mt-DNAs (41). To visualize the 

endogenous mt-DNA, FISH with specific probe sets for target 
genes is used to detect the location and expression level of 
mt-DNA (Fig. 1C) (42). Various cellular events and disease 
conditions can induce heteroplasmy (22). Using mt-DNA FISH 
containing a mixture of 60 unique mt-DNA specific probes, 
the spatiotemporal regulation of the mt-DNA level in 
primordial germ cells was clearly observed (43). Furthermore, 
the authors discovered that changes in the mt-DNA copy 
number and mitochondrial distribution alter germline 
development in D. melanogaster (43). In addition to detecting 
circular mt-DNA, mt-DNA FISH can be used to detect a small 
portion of mt-DNAs in nuclear DNAs (44). Relocation of 
mt-DNA into the nucleus, or nuclear mitochondrial DNA 
(NUMT), was discovered to occur during tumorigenesis by 
using mt-FIBER FISH (44). Also, there is another method called 
the mitochondrial transcription and replication imaging 
protocol (mTRIP) that combines with DNA-FISH, RNA-FISH, 
and immunofluorescence of mitochondrial protein to 
simultaneously visualize mt-DNA, mt-RNA, and proteins (45). 
However, all the FISH experiments have a limitation of 
temporal resolution because fixed samples are used. 

Mitochondrial transcription factor A (TFAM) is an mt-DNA 
binding protein regulating mitochondrial transcription and 
mt-DNA compaction (46); so fluorescent protein-tagged TFAM 
is widely used to analyze mt-DNA dynamics in live cells (Fig. 
1D). Using TFAM, it was discovered that mt-DNA is released 
from mitochondria during apoptosis to activate the innate 
immune pathway (47), and that ER-mitochondria tethering 
regulates mitochondrial fission and mt-DNA replication (32). 
However, the use of TFAM requires careful interpretation, 
since TFAM overexpression increases the mt-DNA copy 
number and upregulates mitochondrial transcription (48, 49). 

MITOCHONDRIAL RNA 

RNA import into mitochondria 
When two strands of the mitochondrial genome are 
transcribed, two polycistronic RNA transcripts containing all 
mitochondrial genes are generated (12), indicating that 
extensive RNA processing is important for gene expression. 
For this reason, normal sequencing does not yield insights into 
mechanism of RNA processing in mitochondria. To overcome 
this limitation, a method of preparing circularization of RNA 
prior to sequencing was developed, to identify and characterize 
various intermediate processing products in mitochondria (50). 
Furthermore, RNA import into mitochondria plays key roles in 
regulation of mitochondrial DNA replication, transcription, 
and translation, and only a few factors involved in these 
processes are known (51, 52). One of them is polynucleotide 
phosphorylase (PNPASE), which transports RNAs containing a 
specific stem-loop structure (Fig. 1E) (52). RNase P, 
mitochondrial ribosomal protein, and 5S rRNAs are targets of 
PNPASE-mediated mitochondrial importing (52). Using the 
targeted mitochondrial RNA import, phenotypes of human 
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mitochondrial DNA disease models were partially rescued 
(53), suggesting that mitochondrial RNA import may provide a 
new opportunity to treat various human diseases containing 
mutations in the mitochondrial genome. 

microRNAs in mitochondria 
Nuclear-encoded microRNAs (miRNAs) are transported into 
mitochondria to regulate expression of mitochondrial-encoded 
DNA (54). The miRNA binds to an RNA-induced silencing 
complex (RISC) that helps it to target specific mRNAs (55). The 
argonaute protein family is the essential component of RISC in 
the cytoplasm, but argonaute 2 (Ago2) is present in 
mitochondria (56). Ago2 is discovered in mitochondria as a 
mitochondrial tRNAMet associated protein (57). Small RNA 
sequencing and microarray profiling revealed 13-20 miRNAs 
in mitochondria (54); miR-181c-5p and miR-146a-5p may 
regulate 19 potential targets in mitochondria (12S RNA, 16S 
RNA, ND1, ND2, ND4, ND5, ND6, CO1, CO2, CO3, ATP6, 
ATP8, Cytb, tRNAAla, tRNAGlu, tRNAGly, tRNASer(UCN), 
tRNASer(AGY), and D-loop) (58). Since miR-378 targets 
mitochondrial ATP6, miR-378 overexpression leads to 
accumulation of miR-378 in mitochondria and reduces the 
level of ATP6 (59). miR-181c targets mt-CO1 and its over-
expression leads to heart failure in vivo (60). miR-1, a 
muscle-specific miRNA in C2C12 cell, improves CO1, ND1, 
CO3, and ATP8 translation (61). The mechanism by which 
miRNAs are transported into the mitochondrial matrix, 
however, is not known. It is plausible that a complex of Ago2 
and miRNA is delivered by vesicle uptake into mitochondria 
(54), or that pre-miRNAs are translocated by a PNPASE- 
mediated mechanism before being processed by an Ago2 
protein (Fig. 1E) (54). It is also possible that miRNA biogenesis 
occurs in mitochondria, since pre-mRNAs are found in the 
mitochondrial matrix (62). Interestingly, miR-1974, miR-1977, 
and miR-1978 in humans are suggested to be encoded by 
mt-DNA (56). 

Visualization of mitochondrial RNA
FISH can be used to visualize mitochondrial RNAs on fixed 
samples but not living cells (63). However, a genetically 
encoded fluorescent probe that can visualize the location and 
dynamics of mt-RNAs in living cells has been developed (64). 
Two identical RNA recognition motif domains of human 
PUMILIO1 protein (PUM-HD) are modified differently to 
recognize 16 different nucleotide sequences in tandem (65), 
followed by tagging with different split fragments of 
fluorescent protein (Fig. 1F) (64). These probes are then 
located in mitochondria using a mitochondrial targeting 
sequence. Mitochondrial RNA of NADH dehydrogenase 6 is 
successfully visualized, and the dynamics of ND6 mRNA in 
the oxidative condition is analyzed (64) using this tool. 
Although single-molecule imaging of cytoplasmic translation is 
achieved by combining SunTag and MS2 stem loops (66-68) 
based on chimeric RNAs (66-68), it is still challenging to apply 

the same technique to mitochondrial study, because of 
difficulties in importing engineered mitochondrial mRNAs into 
mitochondria.

MITOCHONDRIAL PROTEIN

Labeling proteins synthesized in mitochondria
To directly study mitochondrial translation, methods were 
developed to monitor the levels of 13 proteins encoded by 
mt-DNA. Pulse-chase labeling of a mitochondrial translation 
product can be used to investigate the efficiency of 
mitochondrial translation under different conditions (69-71). 
Like labeling cytoplasmic translation products, radioactive 
isotopes, such as [35S]-methionine or a [35S]-methionine/cysteine 
mixture, can label nascent proteins in mitochondria (Fig. 1G) 
(63, 70-74). To exclude contamination of cytoplasmic translation 
products, a cytosolic translation inhibitor, such as emetine or 
anisomycin, should be added to methionine or methionine/ 
cysteine-free media before labeling mitochondrial translation 
products (63, 70-74). Mitochondrial translation inhibitors, such 
as actinonin, chloramphenicol, or erythromycin, are also 
needed for a negative control (63, 70-74). SDS-PAGE followed 
by autoradiography can measure the efficiency of mitochondrial 
translation (63, 70-74). Furthermore, mitochondrial initiation 
factor 2 and 3 are discovered as an activator of mitochondrial 
translation initiation by using the labeling method (75-77).

In situ imaging of mitochondrial translation
A nonradioactive method that detects newly synthesized 
proteins in mitochondria has been developed (78). L-homopro-
pagylglycine (HPG), a methionine analog that contains an 
alkyne moiety, can be incorporated into an actively translating 
peptide in mitochondria, which can be visualized by a 
click-reaction between the alkyne moiety of HPG and a 
fluorescent azide or biotin azide (Fig. 1G). Only nascent 
proteins from mitochondria are detected if cycloheximide, a 
cytoplasmic translation inhibitor, is treated (78). Using this in 
situ imaging technique, Estell et al. observed that mitochondrial 
translation has a poor correlation with the mitochondrial DNA 
amount, and that mitochondrial translation is not decreased 
during mitosis (78). 

SUMMARY

Energy production in cells is strongly correlated with the 
efficiency of the OXPHOS system, and OXPHOS dysfunction 
is frequently found in various human mitochondrial diseases 
(79). Since all mitochondrial protein products become 
components of OXPHOS, it is crucial to precisely regulate 
mitochondrial gene expression. In the near future, we expect 
that development of the CRISPR/Cas 9 system together with 
tools that regulate RNA will rescue dysfunctional mitochondrial 
gene expression, which will provide intervention therapy for 
human diseases caused by defective mitochondria. 
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