• Title/Summary/Keyword: transient gain control

Search Result 115, Processing Time 0.024 seconds

Characteristics of Boost Active Power Factor Correction Converter (부스트 능동 역률개선 컨버터의 특성)

  • Jang, Jun-Young;Lin, Chi-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1152-1159
    • /
    • 2015
  • Switching power supply systems are widely used in many industrial fields. Power factor correction (PFC) circuits have a tendency to be applied in new power supply designs. The PFC circuit with a boost converter using an input power source is studied in this paper. In a boost PFC circuit, there are two feedback control loops: a current feedback loop and a voltage feedback loop. In this paper, the regulation performance gained by using the output voltage and compensator to improve the transient response presented at the continuous conduction mode (CCM) of the boost PFC circuit is analyzed. The validity of the designed boost PFC circuit is confirmed by both MATLAB simulation and experimental results.

Instantaneous Control of a Single-phase PWM Converter Considering the Voltage Ripple Estimate (전압 리플 추정을 고려한 단산 PWM 컨버터의 순시치 제어)

  • 김만기;이우철;현동석
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.27-33
    • /
    • 1997
  • In this paper, instantaneous controller of a single-phase PWM converter is realized using DSP. The stable PI gain of the input current and the DC link voltage control system is designed. The DC link voltage control system can be designed in continuous-time domain. But as for the input current control system, the descretizing effect cannot be ignored so it must be designed in descrete-time domain considering the calculation time. The capacitance estimating algorithm which can be acquired through the ripple voltage is proposed. By this algorithm the DC link capacitance can be estimated even under the transient state. Experimental results show the input power factor of 99.1% and the voltage variation rate of $\pm$5% according to the load variation.

  • PDF

Design of the Feed Forward Controller in Digital Method to Improve Transient Characteristics for Dynamic Voltage Restorers (동적전압보상기의 과도특성을 개선하기 위한 디지털방식의 전향제어기 설계)

  • 김효성;이상준;설승기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.275-284
    • /
    • 2004
  • This paper discusses how to control the compensation voltages in dynamic voltage restorers (DVR). On analyzing the power circuit of a DVR system, control limitations and control targets are presented for the voltage compensation in DVRs. Based on the preceded power stage analysis, a novel controller for the compensation voltages of DVRs is proposed by a feed forward control scheme. This paper discusses also the time delay problems in the control system of DVRs. Digitally controlled DVR systems normally have control delay at amount of one sampling time of the control system and a half of the switching period of the DVR inverter. The control delay in digital controllers increases the dimension of the system transfer function one degree higher, which makes the control system more complicate and more unstable. This paper proposes a guide line to design the control gain, appropriate output filter parameters and inverter switching frequency for DVRs with digital controllers. Proposed theory is verified by an experimental DVR system with a full digital controller.

Auto tuning method for vector control of Induction Motor (유도전동기의 벡터제어를 위한 자기동조기법)

  • Noh, Young-Nam;Yi, Eun-Gyu;Jeong, Eull-Gi;Jeon, Hee-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2139-2142
    • /
    • 1997
  • The most important thing in vector control scheme is the knowledge of accurate electrical motor parameters. These parameters can computed by conventional motor test, such as no-load and locked rotor tests. However, the values from these tests are different from actual motor parameters, and the adjustment process of the parameters is time consuming. This paper presents an auto-tuning method for vector control of induction motor. The tuning algorithm is based on the rotor flux behavior of the induction motor for stepwise torque current command. The transient terminal voltage caused by the undesirable variation of the rotor flux is used for tuning the slip gain $K_5$ defined as the inverse of the rotor time constant. The electrical parameters of induction motor can also calculated by this method. The presented method is evaluated through the computer simulations.

  • PDF

Synchronizing Control of Multiple DC Motors (복수 DC모터 동기 제어)

  • Yun, J.H.;Suh, I.H.;Shin, Y.S.;Kim, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.475-479
    • /
    • 1990
  • Two control algorithms for synchronizing multiple DC motors are proposed to compensate load variation and gain mismatches. Specifically, a mathematical model of a practical DC servo system is drived and analyzed to see synchronizing effect at the steady-state. Also a compensator is proposed to synchronize multiple motors at the transient-state. As an experimental system, two-axis synchronizing control system is developed and tested to show the validities of our proposed method.

  • PDF

High Response and Precision Control of Electronic Throttle Controller Module without Hall Position Sensor for Detecting Rotor Position of BLDCM

  • Lee, Sang-Hun;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.97-103
    • /
    • 2013
  • This paper describes the characteristics of Electronic Throttle Controller (ETC) module in BLDC motor without the hall sensor for detecting a rotor position. The proposed ETC control system, which is mainly consisted of a BLDC motor, a throttle plate, a return spring and reduction gear, has a position sensor with an analogue voltage output on the throttle valve instead of BLDC motor for detecting the rotor position. So the additional commutation information is necessarily needed to control the ETC module. For this, the estimation method is applied. In order to improve and obtain the high resolution for the position control, it is generally needed to change the gear ratio of the module or the electrical switching method etc. In this paper, the 3-phase switching between successive commutations is adapted instead of the 2-phase switching that is conventionally used. In addition, the position control with a variable PI gain is applied to improve a dynamic response during a transient period and reduce vibration at a stop in case of matching position reference. The mentioned method can be used to estimate the commutation state and operate the high-precision position control for the ETC module and the high response characteristics. The validity of the proposed method is examined through the experimental results.

Design of the Single-loop Voltage Controller for Arbitrary Waveform Generator (임의 파형 발생기를 위한 단일 루프 전압 제어기 설계)

  • Kim, Hyeon-Sik;Chee, Seung-Jun;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.58-64
    • /
    • 2016
  • This study presents a design method for a single-loop voltage controller that is suitable for an arbitrary waveform generator (AWG). The voltage control algorithm of AWG should ensure high dynamic performance and should attain sufficient robustness to disturbances such as inverter nonlinearity, sensor noise, and load current. By analyzing the power circuit of AWG, control limitation and control target are presented to improve the dynamic performance of AWG. The proposed voltage control algorithm is composed of a single-loop output voltage control, an inverter current feedback term to improve transient response, and a load current feedforward term to prevent voltage distortion. The guideline for setting control gain is presented based on output filter parameters and digital time delay. The performance of the proposed algorithm is proven by experimental results through comparison with the conventional algorithm.

Control of Systems Containing Deadzone of PID Controller using Fuzzy Compensator and Fuzzy Tuner (퍼지 보상기와 퍼지 동조기를 이용한 PID제어기의 Deadzone을 포함한 시스템 제어)

  • 박재형;김승철;조용성;최부귀
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.403-410
    • /
    • 1999
  • A conventional PID controller has poor performance when it applied to systems with unknown deadzones. To solve this problem, this paper proposes PID controller using two layered-fuzzy logic. The structure of controller is reconstructed with fuzzy compensator and fuzzy tuner on the conventional PID controller. Our proposed control scheme shows superior transient and steady-state performance compared to conventional PID controller. The scheme is robust to variations in deadzone nonlinearities as well as the steady-state gain of the plant. The performance of the developed controller is verified through simulation.

  • PDF

A Stable Model Reference Adaptive Control with a Generalized Adaptive Law (일반화된 적응법칙을 사용한 안정한 기준모델 적응제어)

  • 이호진;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.8
    • /
    • pp.1167-1177
    • /
    • 1989
  • In this paper, a generalized adaptive law is proposed which uses a rational function type operator for parameter adjustment. To satisfy the passivity condition of the adaptation block, we introduce a constant feedback gain into the adaptation block. This adaptation scheme is applied to the model reference adaptive control of a continuous-time, linear time-invariant, minimum-phase system whose relative degree is 1. We prove the asymptotic stability of the output error of this adaptive system by hyperstability method. It is shown that by digital computer simulations this law can give a better output error transient response in some cases than the conventional gradient adaptive law. And the output error responses for the several types of the proposed adaptation law are examined in the presence of a kind of unmodeled dynamics.

  • PDF

Nonlinear Feedback Linearization-Full Order Observer/Sliding Mode Controller Design for Improving Transient Stability in a Power System

  • Lee, Sang-Seung;Park, Jong-Keun
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.184-192
    • /
    • 1998
  • In this paper, we present a nonlinear feedback linearization-full order observer/sliding mode controller (NFL-FOO/SMC), to obtain smmoth control as a linearized controller in a linear system (or to cancel the nonlinearity in a nonlinear system), and to solve the problem of the unmeasurable state variables as in the conventional SMC. The proposed controller is obtained by combining the nonlinear feedback linearization-sliding mode control (NFL-SMC) with the full order observer (FOO)and eliminates the need to measure all the state variables in the traditional SMC. The proposed controller is applied to the nonlinear power system stabilizer (PSS) for damping oscillations in a power system. The effectiveness of the proposed controller is verified by the nonlinear time-domain simulations in case of a 3-cycle line-to-ground fault and in case of the parameter variation for the AVR gain K\ulcorner and for the inertia moment M.

  • PDF